Showing 4 open source projects for "tkinter for python 2.7"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    Build gen AI apps with an all-in-one modern database: MongoDB Atlas

    MongoDB Atlas provides built-in vector search and a flexible document model so developers can build, scale, and run gen AI apps without stitching together multiple databases. From LLM integration to semantic search, Atlas simplifies your AI architecture—and it’s free to get started.
    Start Free
  • 1
    asammdf

    asammdf

    Fast Python reader and editor for ASAM MDF / MF4 (Measurement Format)

    *asammdf* is a fast Python parser and editor for ASAM (Associtation for Standardisation of Automation and Measuring Systems) MDF / MF4 (Measurement Data Format) files. It supports MDF versions 2 (.dat), 3 (.mdf) and 4 (.mf4). *asammdf* works on Python 2.7, and Python >= 3.4
    Downloads: 40 This Week
    Last Update:
    See Project
  • 2
    Neural Networks Collection

    Neural Networks Collection

    Neural Networks Collection

    This project implements in C++ a bunch of known Neural Networks. So far the project implements: LVQ in several variants, SOM in several variants, Hopfield network and Perceptron. Other neural network types are planned, but not implemented yet. The project can run in two modes: command line tool and Python 7.2 extension. Currently, Python version appears more functional, as it allows easy interaction with algorithms developed by other people.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3

    Physic Research Tools

    Python, Physics, PyQt, Software, Data adquisition, Spectroscopy, UV

    Como técnico en informática en un Instituto de Física con el tiempo surgió la necesidad de tener que crear distintas piezas de software para ir resolviendo situaciones diarias. En este proyecto iré agregando pequeños programas en Python 2.7 que voy escribiendo para dar soluciones a algunos de los problemas que surgen día a día en el laboratorio, como ser comunicación con algunos dispositivos o rutinas para ordenar o modificar datos de forma recursiva algunos cálculos matemáticos, creación de gráficas etc. La finalidad principal del proyecto es poder poner a disposición de aquel que lo necesite mi trabajo tanto dentro del Instituto donde trabajo como fuera del mismo. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4

    SpiKeDeteKt

    An automatic spike detection program to be used with new KlustaKwik

    This is an automatic spike detection program which takes account of probe geometry and produces a .mask file to be used with the new masked version of KlustaKwik. We recommend you use Python 2.6 or 2.7, e.g. a free academic version can be obtained from Entthought Python. The input files for SpiKeDeteKt are: .dat (raw data file) .probe (probe file, described below - user constructed) parameters.py (optional - otherwise it uses defaultparameters.py) SpiKeDeteKt outputs the following files: .fet.n (feature file) .mask.n (needed for using the new (masked) KlustaKwik) .clu.n (a trivial clue file where everything is put into a single cluster) .fmask.n (trial - float masks instead of binary, we are using this for testing masked KlustaKwik) .spk.n (spike file) .upsk.n (unfiltered spike waveform) .res.n (list of spike times) .xml (an xml file with all the parameters that can subsequently be used by neuroscope or klusters) .fil (highpass filtered data) .h5 (
    Downloads: 0 This Week
    Last Update:
    See Project
  • Build Securely on AWS with Proven Frameworks Icon
    Build Securely on AWS with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • Previous
  • You're on page 1
  • Next