Showing 2 open source projects for "super%20mario"

View related business solutions
  • Find Hidden Risks in Windows Task Scheduler Icon
    Find Hidden Risks in Windows Task Scheduler

    Free diagnostic script reveals configuration issues, error patterns, and security risks. Instant HTML report.

    Windows Task Scheduler might be hiding critical failures. Download the free JAMS diagnostic tool to uncover problems before they impact production—get a color-coded risk report with clear remediation steps in minutes.
    Download Free Tool
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 1
    Warlock-Studio

    Warlock-Studio

    Suite with Real-ESRGAN, BSRGAN , RealESRNet, IRCNN, GFPGAN & RIFE.

    v5.1.1. Warlock-Studio is a Windows application that uses Real-ESRGAN, BSRGAN, IRCNN, GFPGAN, RealESRNet, RealESRAnime and RIFE Artificial Intelligence models to upscale, restore faces, interpolate frames and reduce noise in images and videos. the application supports GPU acceleration (including multi-GPU setups) and offers batch processing for large workloads. It includes drag-and-drop handling for single or multiple files, optional pre-resize functions, and an automatic tiling system...
    Leader badge
    Downloads: 22 This Week
    Last Update:
    See Project
  • 2
    Image Super-Resolution (ISR)

    Image Super-Resolution (ISR)

    Super-scale your images and run experiments with Residual Dense

    The goal of this project is to upscale and improve the quality of low-resolution images. This project contains Keras implementations of different Residual Dense Networks for Single Image Super-Resolution (ISR) as well as scripts to train these networks using content and adversarial loss components. Docker scripts and Google Colab notebooks are available to carry training and prediction. Also, we provide scripts to facilitate training on the cloud with AWS and Nvidia-docker with only a few commands. When training your own model, start with only PSNR loss (50+ epochs, depending on the dataset) and only then introduce GANS and feature loss. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next