Build gen AI apps with an all-in-one modern database: MongoDB Atlas
MongoDB Atlas provides built-in vector search and a flexible document model so developers can build, scale, and run gen AI apps without stitching together multiple databases. From LLM integration to semantic search, Atlas simplifies your AI architecture—and it’s free to get started.
Start Free
Keep company data safe with Chrome Enterprise
Protect your business with AI policies and data loss prevention in the browser
Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
Machine learning, computer vision, statistics and computing for .NET
The Accord.NET Framework is a .NET machine learning framework combined with audio and image processing libraries completely written in C#. It is a complete framework for building production-grade computer vision, computer audition, signal processing and statistics applications even for commercial use. A comprehensive set of sample applications provide a fast start to get up and running quickly, and extensive documentation and a wiki help fill in the details.
Wienert S, Heim D, Kotani M, Lindequist B, Stenzinger A, Ishii M, Hufnagl P, Beil M, Dietel M, Denkert C, Klauschen F. CognitionMaster: an object-based image analysis framework. Diagn Pathol 2013, 8:34
XIPL is a simple image processing library for Microsoft's XNA Game Studio framework. All image processing routines are coded in HLSL as pixel shaders and executed at amazing speed thanks to the GPU's massive parallel architecture.
ScienceNET is a open source library written in C# which aims to provide a self contained clean .NET framework for neural networks, genetic algorithms, optimization, image processing and for other domains of a computational science.
Full access to Enterprise features. No credit card required.
What if You Could Automate 90% of Your Repetitive Tasks in Under 30 Days? At ServoDesk, we help businesses like yours automate operations with AI, allowing you to cut service times in half and increase productivity by 25% - without hiring more staff.