Showing 45 open source projects for "deep learning with python"

View related business solutions
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • 1
    Deep Lake

    Deep Lake

    Data Lake for Deep Learning. Build, manage, and query datasets

    Deep Lake (formerly known as Activeloop Hub) is a data lake for deep learning applications. Our open-source dataset format is optimized for rapid streaming and querying of data while training models at scale, and it includes a simple API for creating, storing, and collaborating on AI datasets of any size. It can be deployed locally or in the cloud, and it enables you to store all of your data in one place, ranging from simple annotations to large videos.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 2
    Megatron

    Megatron

    Ongoing research training transformer models at scale

    Megatron is a large, powerful transformer developed by the Applied Deep Learning Research team at NVIDIA. This repository is for ongoing research on training large transformer language models at scale. We developed efficient, model-parallel (tensor, sequence, and pipeline), and multi-node pre-training of transformer based models such as GPT, BERT, and T5 using mixed precision. Megatron is also used in NeMo Megatron, a framework to help enterprises overcome the challenges of building and training sophisticated natural language processing models with billions and trillions of parameters. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 3
    Albumentations

    Albumentations

    Fast image augmentation library and an easy-to-use wrapper

    ...Albumentations works well with data from different domains: photos, medical images, satellite imagery, manufacturing and industrial applications, Generative Adversarial Networks. Albumentations can work with various deep learning frameworks such as PyTorch and Keras.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Orion

    Orion

    A machine learning library for detecting anomalies in signals

    Orion is a machine-learning library built for unsupervised time series anomaly detection. Such signals are generated by a wide variety of systems, few examples include telemetry data generated by satellites, signals from wind turbines, and even stock market price tickers. We built this to provide one place where users can find the latest and greatest in machine learning and deep learning world including our own innovations.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Level Up Your Cyber Defense with External Threat Management Icon
    Level Up Your Cyber Defense with External Threat Management

    See every risk before it hits. From exposed data to dark web chatter. All in one unified view.

    Move beyond alerts. Gain full visibility, context, and control over your external attack surface to stay ahead of every threat.
    Try for Free
  • 5
    Make-A-Video - Pytorch (wip)

    Make-A-Video - Pytorch (wip)

    Implementation of Make-A-Video, new SOTA text to video generator

    Implementation of Make-A-Video, new SOTA text to video generator from Meta AI, in Pytorch. They combine pseudo-3d convolutions (axial convolutions) and temporal attention and show much better temporal fusion. The pseudo-3d convolutions isn't a new concept. It has been explored before in other contexts, say for protein contact prediction as "dimensional hybrid residual networks". The gist of the paper comes down to, take a SOTA text-to-image model (here they use DALL-E2, but the same learning...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 6
    Synthetic Data Vault (SDV)

    Synthetic Data Vault (SDV)

    Synthetic Data Generation for tabular, relational and time series data

    The Synthetic Data Vault (SDV) is a Synthetic Data Generation ecosystem of libraries that allows users to easily learn single-table, multi-table and timeseries datasets to later on generate new Synthetic Data that has the same format and statistical properties as the original dataset. Synthetic data can then be used to supplement, augment and in some cases replace real data when training Machine Learning models. Additionally, it enables the testing of Machine Learning or other data dependent software systems without the risk of exposure that comes with data disclosure. Underneath the hood it uses several probabilistic graphical modeling and deep learning based techniques. To enable a variety of data storage structures, we employ unique hierarchical generative modeling and recursive sampling techniques.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 7
    pytorch-cpp

    pytorch-cpp

    C++ Implementation of PyTorch Tutorials for Everyone

    C++ Implementation of PyTorch Tutorials for Everyone. This repository provides tutorial code in C++ for deep learning researchers to learn PyTorch (i.e. Section 1 to 3) Interactive Tutorials are currently running on LibTorch Nightly Version. Libtorch only supports 64bit Windows and an x64 generator needs to be specified. Create all required script module files for pre-learned models/weights during the build. Requires installed python3 with PyTorch and torch-vision.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 8
    CTGAN

    CTGAN

    Conditional GAN for generating synthetic tabular data

    CTGAN is a collection of Deep Learning based synthetic data generators for single table data, which are able to learn from real data and generate synthetic data with high fidelity. If you're just getting started with synthetic data, we recommend installing the SDV library which provides user-friendly APIs for accessing CTGAN. The SDV library provides wrappers for preprocessing your data as well as additional usability features like constraints.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 9
    marqo

    marqo

    Tensor search for humans

    ...Marqo is a versatile and robust search and analytics engine that can be integrated into any website or application. Due to horizontal scalability, Marqo provides lightning-fast query times, even with millions of documents. Marqo helps you configure deep-learning models like CLIP to pull semantic meaning from images. It can seamlessly handle image-to-image, image-to-text and text-to-image search and analytics. Marqo adapts and stores your data in a fully schemaless manner. It combines tensor search with a query DSL that provides efficient pre-filtering. Tensor search allows you to go beyond keyword matching and search based on the meaning of text, images and other unstructured data. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 10
    SDGym

    SDGym

    Benchmarking synthetic data generation methods

    The Synthetic Data Gym (SDGym) is a benchmarking framework for modeling and generating synthetic data. Measure performance and memory usage across different synthetic data modeling techniques – classical statistics, deep learning and more! The SDGym library integrates with the Synthetic Data Vault ecosystem. You can use any of its synthesizers, datasets or metrics for benchmarking. You also customize the process to include your own work. Select any of the publicly available datasets from the SDV project, or input your own data. Choose from any of the SDV synthesizers and baselines. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    NVIDIA NeMo

    NVIDIA NeMo

    Toolkit for conversational AI

    NVIDIA NeMo, part of the NVIDIA AI platform, is a toolkit for building new state-of-the-art conversational AI models. NeMo has separate collections for Automatic Speech Recognition (ASR), Natural Language Processing (NLP), and Text-to-Speech (TTS) models. Each collection consists of prebuilt modules that include everything needed to train on your data. Every module can easily be customized, extended, and composed to create new conversational AI model architectures. Conversational AI...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 12
    LlamaIndex

    LlamaIndex

    Central interface to connect your LLM's with external data

    LlamaIndex (GPT Index) is a project that provides a central interface to connect your LLM's with external data. LlamaIndex is a simple, flexible interface between your external data and LLMs. It provides the following tools in an easy-to-use fashion. Provides indices over your unstructured and structured data for use with LLM's. These indices help to abstract away common boilerplate and pain points for in-context learning. Dealing with prompt limitations (e.g. 4096 tokens for Davinci) when...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 13
    OpenAI DALL·E AsyncImage SwiftUI

    OpenAI DALL·E AsyncImage SwiftUI

    OpenAI swift async text to image for SwiftUI app using OpenAI

    SwiftUI views that asynchronously loads and displays an OpenAI image from open API. You just type in your idea and AI will give you an art solution. DALL-E and DALL-E 2 are deep learning models developed by OpenAI to generate digital images from natural language descriptions, called "prompts". You need to have Xcode 13 installed in order to have access to Documentation Compiler (DocC) OpenAI's text-to-image model DALL-E 2 is a recent example of diffusion models. It uses diffusion models for both the model's prior (which produces an image embedding given a text caption) and the decoder that generates the final image. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 14
    Lightweight' GAN

    Lightweight' GAN

    Implementation of 'lightweight' GAN, proposed in ICLR 2021

    Implementation of 'lightweight' GAN proposed in ICLR 2021, in Pytorch. The main contribution of the paper is a skip-layer excitation in the generator, paired with autoencoding self-supervised learning in the discriminator. Quoting the one-line summary "converge on single gpu with few hours' training, on 1024 resolution sub-hundred images". Augmentation is essential for Lightweight GAN to work effectively in a low data setting. You can test and see how your images will be augmented before...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    texturize

    texturize

    Generate photo-realistic textures based on source images

    Generate photo-realistic textures based on source images. Remix, remake, mashup! Useful if you want to create variations on a theme or elaborate on an existing texture. A command-line tool and Python library to automatically generate new textures similar to a source image or photograph. It's useful in the context of computer graphics if you want to make variations on a theme or expand the size of an existing texture. This software is powered by deep learning technology, using a combination of convolution networks and example-based optimization to synthesize images. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    GPT-NeoX

    GPT-NeoX

    Implementation of model parallel autoregressive transformers on GPUs

    This repository records EleutherAI's library for training large-scale language models on GPUs. Our current framework is based on NVIDIA's Megatron Language Model and has been augmented with techniques from DeepSpeed as well as some novel optimizations. We aim to make this repo a centralized and accessible place to gather techniques for training large-scale autoregressive language models, and accelerate research into large-scale training. For those looking for a TPU-centric codebase, we...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 17
    Intelligent Java

    Intelligent Java

    Integrate with the latest language models, image generation and speech

    Intelligent java (IntelliJava) is the ultimate tool to integrate with the latest language models and deep learning frameworks using java. The library provides an intuitive functions for sending input to models like ChatGPT and DALL·E, and receiving generated text, speech or images. With just a few lines of code, you can easily access the power of cutting-edge AI models to enhance your projects. Access ChatGPT, GPT3 to generate text and DALL·E to generate images.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 18
    VALL-E

    VALL-E

    PyTorch implementation of VALL-E (Zero-Shot Text-To-Speech)

    We introduce a language modeling approach for text to speech synthesis (TTS). Specifically, we train a neural codec language model (called VALL-E) using discrete codes derived from an off-the-shelf neural audio codec model, and regard TTS as a conditional language modeling task rather than continuous signal regression as in previous work. During the pre-training stage, we scale up the TTS training data to 60K hours of English speech which is hundreds of times larger than existing systems....
    Downloads: 3 This Week
    Last Update:
    See Project
  • 19
    CPT

    CPT

    CPT: A Pre-Trained Unbalanced Transformer

    A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Generation. We replace the old BERT vocabulary with a larger one of size 51271 built from the training data, in which we 1) add missing 6800+ Chinese characters (most of them are traditional Chinese characters); 2) remove redundant tokens (e.g. Chinese character tokens with ## prefix); 3) add some English tokens to reduce OOV. Position Embeddings We extend the max_position_embeddings from 512 to 1024. We...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 20
    Emb-GAM

    Emb-GAM

    An interpretable and efficient predictor using pre-trained models

    Deep learning models have achieved impressive prediction performance but often sacrifice interpretability, a critical consideration in high-stakes domains such as healthcare or policymaking. In contrast, generalized additive models (GAMs) can maintain interpretability but often suffer from poor prediction performance due to their inability to effectively capture feature interactions.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Deep Daze

    Deep Daze

    Simple command line tool for text to image generation

    Simple command-line tool for text to image generation using OpenAI's CLIP and Siren (Implicit neural representation network). In true deep learning fashion, more layers will yield better results. Default is at 16, but can be increased to 32 depending on your resources. Technique first devised and shared by Mario Klingemann, it allows you to prime the generator network with a starting image, before being steered towards the text. Simply specify the path to the image you wish to use, and optionally the number of initial training steps. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 22
    StudioGAN

    StudioGAN

    StudioGAN is a Pytorch library providing implementations of networks

    StudioGAN is a Pytorch library providing implementations of representative Generative Adversarial Networks (GANs) for conditional/unconditional image generation. StudioGAN aims to offer an identical playground for modern GANs so that machine learning researchers can readily compare and analyze a new idea. Moreover, StudioGAN provides an unprecedented-scale benchmark for generative models. The benchmark includes results from GANs (BigGAN-Deep, StyleGAN-XL), auto-regressive models (MaskGIT, RQ-Transformer), and Diffusion models (LSGM++, CLD-SGM, ADM-G-U). StudioGAN is a self-contained library that provides 7 GAN architectures, 9 conditioning methods, 4 adversarial losses, 13 regularization modules, 6 augmentation modules, 8 evaluation metrics, and 5 evaluation backbones. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Machine Learning PyTorch Scikit-Learn

    Machine Learning PyTorch Scikit-Learn

    Code Repository for Machine Learning with PyTorch and Scikit-Learn

    ...For those who are interested in knowing what this book covers in general, I’d describe it as a comprehensive resource on the fundamental concepts of machine learning and deep learning. The first half of the book introduces readers to machine learning using scikit-learn, the defacto approach for working with tabular datasets. Then, the second half of this book focuses on deep learning, including applications to natural language processing and computer vision.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Texar-PyTorch

    Texar-PyTorch

    Integrating the Best of TF into PyTorch, for Machine Learning

    Texar-PyTorch is a toolkit aiming to support a broad set of machine learning, especially natural language processing and text generation tasks. Texar provides a library of easy-to-use ML modules and functionalities for composing whatever models and algorithms. The tool is designed for both researchers and practitioners for fast prototyping and experimentation. Texar-PyTorch was originally developed and is actively contributed by Petuum and CMU in collaboration with other institutes. A mirror...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Deep Feature Rotation Multimodal Image

    Deep Feature Rotation Multimodal Image

    Implementation of Deep Feature Rotation for Multimodal Image

    Official implementation of paper Deep Feature Rotation for Multimodal Image Style Transfer [NICS'21] We propose a simple method for representing style features in many ways called Deep Feature Rotation (DFR), while still achieving effective stylization compared to more complex methods in style transfer. Our approach is a representative of the many ways of augmentation for intermediate feature embedding without consuming too much computational expense. Prepare your content image and style...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • Next