Showing 14 open source projects for "tensorflow"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Cloud tools for web scraping and data extraction Icon
    Cloud tools for web scraping and data extraction

    Deploy pre-built tools that crawl websites, extract structured data, and feed your applications. Reliable web data without maintaining scrapers.

    Automate web data collection with cloud tools that handle anti-bot measures, browser rendering, and data transformation out of the box. Extract content from any website, push to vector databases for RAG workflows, or pipe directly into your apps via API. Schedule runs, set up webhooks, and connect to your existing stack. Free tier available, then scale as you need to.
    Explore 10,000+ tools
  • 1
    YData Synthetic

    YData Synthetic

    Synthetic data generators for tabular and time-series data

    ...This repository contains material related to Generative Adversarial Networks for synthetic data generation, in particular regular tabular data and time-series. It consists a set of different GANs architectures developed using Tensorflow 2.0. Several example Jupyter Notebooks and Python scripts are included, to show how to use the different architectures. YData synthetic has now a UI interface to guide you through the steps and inputs to generate structure tabular data. The streamlit app is available form v1.0.0 onwards.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    Texar-PyTorch

    Texar-PyTorch

    Integrating the Best of TF into PyTorch, for Machine Learning

    ...Texar-PyTorch was originally developed and is actively contributed by Petuum and CMU in collaboration with other institutes. A mirror of this repository is maintained by Petuum Open Source. Texar-PyTorch integrates many of the best features of TensorFlow into PyTorch, delivering highly usable and customizable modules superior to PyTorch native ones. Texar-PyTorch (this repo) and Texar-TF have mostly the same interfaces. Both further combine the best design of TF and PyTorch. Data processing, model architectures, loss functions, training and inference algorithms, evaluation, etc.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Machine Learning PyTorch Scikit-Learn

    Machine Learning PyTorch Scikit-Learn

    Code Repository for Machine Learning with PyTorch and Scikit-Learn

    ...However, after putting so much passion and hard work into the changes and new topics, we thought it deserved a new title. So, what’s new? There are many contents and additions, including the switch from TensorFlow to PyTorch, new chapters on graph neural networks and transformers, a new section on gradient boosting, and many more that I will detail in a separate blog post. For those who are interested in knowing what this book covers in general, I’d describe it as a comprehensive resource on the fundamental concepts of machine learning and deep learning. ...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 4
    gpt-2-simple

    gpt-2-simple

    Python package to easily retrain OpenAI's GPT-2 text-generating model

    ...For finetuning, it is strongly recommended to use a GPU, although you can generate using a CPU (albeit much more slowly). If you are training in the cloud, using a Colaboratory notebook or a Google Compute Engine VM w/ the TensorFlow Deep Learning image is strongly recommended. (as the GPT-2 model is hosted on GCP) You can use gpt-2-simple to retrain a model using a GPU for free in this Colaboratory notebook, which also demos additional features of the package. Note: Development on gpt-2-simple has mostly been superceded by aitextgen, which has similar AI text generation capabilities with more efficient training time.
    Downloads: 3 This Week
    Last Update:
    See Project
  • Nonprofit Budgeting Software Icon
    Nonprofit Budgeting Software

    Martus Solutions provides seamless budgeting, reporting, and forecasting tools that integrate with accounting systems for real-time financial insights

    Martus' collaborative and easy-to-use budgeting and reporting platform will save you hundreds of hours each year. It's designed to make the entire budgeting process easier and create unlimited financial transparency.
    Learn More
  • 5
    GPT Neo

    GPT Neo

    An implementation of model parallel GPT-2 and GPT-3-style models

    An implementation of model & data parallel GPT3-like models using the mesh-tensorflow library. If you're just here to play with our pre-trained models, we strongly recommend you try out the HuggingFace Transformer integration. Training and inference is officially supported on TPU and should work on GPU as well. This repository will be (mostly) archived as we move focus to our GPU-specific repo, GPT-NeoX. NB, while neo can technically run a training step at 200B+ parameters, it is very inefficient at those scales. ...
    Downloads: 14 This Week
    Last Update:
    See Project
  • 6
    Hands-on Unsupervised Learning

    Hands-on Unsupervised Learning

    Code for Hands-on Unsupervised Learning Using Python (O'Reilly Media)

    ...Unsupervised learning can be applied to unlabeled datasets to discover meaningful patterns buried deep in the data, patterns that may be near impossible for humans to uncover. Author Ankur Patel provides practical knowledge on how to apply unsupervised learning using two simple, production-ready Python frameworks - scikit-learn and TensorFlow. With the hands-on examples and code provided, you will identify difficult-to-find patterns in data.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Text Gen

    Text Gen

    Almost state of art text generation library

    Almost state of art text generation library. Text gen is a python library that allow you build a custom text generation model with ease. Something sweet built with Tensorflow and Pytorch(coming soon). Load your data, your data must be in a text format. Download the example data from the example folder. Tune your model to know the best optimizer, activation method to use.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 8
    GPT2 for Multiple Languages

    GPT2 for Multiple Languages

    GPT2 for Multiple Languages, including pretrained models

    ...The contents in this repository are for academic research purpose, and we do not provide any conclusive remarks. Research supported with Cloud TPUs from Google's TensorFlow Research Cloud (TFRC) Simplifed GPT2 train scripts(based on Grover, supporting TPUs). Ported bert tokenizer, multilingual corpus compatible. 1.5B GPT2 pretrained Chinese model (~15G corpus, 10w steps). Batteries-included Colab demo. 1.5B GPT2 pretrained Chinese model (~30G corpus, 22w steps).
    Downloads: 1 This Week
    Last Update:
    See Project
  • 9
    GPT-2 FR

    GPT-2 FR

    GPT-2 French demo | Démo française de GPT-2

    OpenAI GPT-2 model trained on four different datasets in French. Books in French, French film scripts, reports of parliamentary debates, Tweet by Emmanuel Macron, allowing to generate text. Tensorflow and gpt-2-simple are required in order to fine-tune GPT-2. Create an environment then install the two packages pip install tensorflow==1.14 gpt-2-simple. A script and a notebook are available in the src folder to fine-tune GPT-2 on your own datasets. The output of each workout, i.e. the folder checkpoint/run1, is to be put ingpt2-model/model1 model2 model3 etc. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • The Most Powerful Software Platform for EHSQ and ESG Management Icon
    The Most Powerful Software Platform for EHSQ and ESG Management

    Addresses the needs of small businesses and large global organizations with thousands of users in multiple locations.

    Choose from a complete set of software solutions across EHSQ that address all aspects of top performing Environmental, Health and Safety, and Quality management programs.
    Learn More
  • 10
    gpt2-client

    gpt2-client

    Easy-to-use TensorFlow Wrapper for GPT-2 117M, 345M, 774M, etc.

    GPT-2 is a Natural Language Processing model developed by OpenAI for text generation. It is the successor to the GPT (Generative Pre-trained Transformer) model trained on 40GB of text from the internet. It features a Transformer model that was brought to light by the Attention Is All You Need paper in 2017. The model has 4 versions - 124M, 345M, 774M, and 1558M - that differ in terms of the amount of training data fed to it and the number of parameters they contain. Finally, gpt2-client is a...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    NiftyNet

    NiftyNet

    An open-source convolutional neural networks platform for research

    An open-source convolutional neural networks platform for medical image analysis and image-guided therapy. NiftyNet is a TensorFlow-based open-source convolutional neural networks (CNNs) platform for research in medical image analysis and image-guided therapy. NiftyNet’s modular structure is designed for sharing networks and pre-trained models. Using this modular structure you can get started with established pre-trained networks using built-in tools. Adapt existing networks to your imaging data. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    FID score for PyTorch

    FID score for PyTorch

    Compute FID scores with PyTorch

    ...FID is calculated by computing the Fréchet distance between two Gaussians fitted to feature representations of the Inception network. The weights and the model are exactly the same as in the official Tensorflow implementation, and were tested to give very similar results (e.g. .08 absolute error and 0.0009 relative error on LSUN, using ProGAN generated images). However, due to differences in the image interpolation implementation and library backends, FID results still differ slightly from the original implementation. In difference to the official implementation, you can choose to use a different feature layer of the Inception network instead of the default pool3 layer.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    PyTorch pretrained BigGAN

    PyTorch pretrained BigGAN

    PyTorch implementation of BigGAN with pretrained weights

    ...This PyTorch implementation of BigGAN is provided with the pretrained 128x128, 256x256 and 512x512 models by DeepMind. We also provide the scripts used to download and convert these models from the TensorFlow Hub models. This reimplementation was done from the raw computation graph of the Tensorflow version and behave similarly to the TensorFlow version (variance of the output difference of the order of 1e-5). This implementation currently only contains the generator as the weights of the discriminator were not released (although the structure of the discriminator is very similar to the generator so it could be added pretty easily.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 14
    Exposure

    Exposure

    Learning infinite-resolution image processing with GAN and RL

    Learning infinite-resolution image processing with GAN and RL from unpaired image datasets, using a differentiable photo editing model. ACM Transactions on Graphics (presented at SIGGRAPH 2018) Exposure is originally designed for RAW photos, which assumes 12+ bit color depth and linear "RGB" color space (or whatever we get after demosaicing). jpg and png images typically have only 8-bit color depth (except 16-bit pngs) and the lack of information (dynamic range/activation resolution) may...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next