Showing 2 open source projects for "network visualization"

View related business solutions
  • Cut Cloud Costs with Google Compute Engine Icon
    Cut Cloud Costs with Google Compute Engine

    Save up to 91% with Spot VMs and get automatic sustained-use discounts. One free VM per month, plus $300 in credits.

    Save on compute costs with Compute Engine. Reduce your batch jobs and workload bill 60-91% with Spot VMs. Compute Engine's committed use offers customers up to 70% savings through sustained use discounts. Plus, you get one free e2-micro VM monthly and $300 credit to start.
    Try Compute Engine
  • Deploy Apps in Seconds with Cloud Run Icon
    Deploy Apps in Seconds with Cloud Run

    Host and run your applications without the need to manage infrastructure. Scales up from and down to zero automatically.

    Cloud Run is the fastest way to deploy containerized apps. Push your code in Go, Python, Node.js, Java, or any language and Cloud Run builds and deploys it automatically. Get fast autoscaling, pay only when your code runs, and skip the infrastructure headaches. Two million requests free per month. And new customers get $300 in free credit.
    Try Cloud Run Free
  • 1
    Point-E

    Point-E

    Point cloud diffusion for 3D model synthesis

    point-e is the official repository for Point-E, a generative model developed by OpenAI that produces 3D point clouds from textual (or image) prompts. Its principal advantage is speed: it can generate 3D assets in just 1–2 minutes on a single GPU, which is significantly faster than many competing text-to-3D models. The model works via a two-stage diffusion approach: first, it uses a text → image diffusion network to produce a synthetic 2D view consistent with the prompt; then a second...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    GANformer

    GANformer

    Generative Adversarial Transformers

    This is an implementation of the GANformer model, a novel and efficient type of transformer, explored for the task of image generation. The network employs a bipartite structure that enables long-range interactions across the image, while maintaining computation of linearly efficiency, that can readily scale to high-resolution synthesis. The model iteratively propagates information from a set of latent variables to the evolving visual features and vice versa, to support the refinement of...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next
MongoDB Logo MongoDB