Showing 5 open source projects for "interpolation"

View related business solutions
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • 99.99% Uptime for MySQL and PostgreSQL on Google Cloud Icon
    99.99% Uptime for MySQL and PostgreSQL on Google Cloud

    Enterprise Plus edition delivers sub-second maintenance downtime and 2x read/write performance. Built for critical apps.

    Cloud SQL Enterprise Plus gives you a 99.99% availability SLA with near-zero downtime maintenance—typically under 10 seconds. Get 2x better read/write performance, intelligent data caching, and 35 days of point-in-time recovery. Supports MySQL, PostgreSQL, and SQL Server with built-in vector search for gen AI apps. New customers get $300 in free credit.
    Try Cloud SQL Free
  • 1
    Make-A-Video - Pytorch (wip)

    Make-A-Video - Pytorch (wip)

    Implementation of Make-A-Video, new SOTA text to video generator

    ...The gist of the paper comes down to, take a SOTA text-to-image model (here they use DALL-E2, but the same learning points would easily apply to Imagen), make a few minor modifications for attention across time and other ways to skimp on the compute cost, do frame interpolation correctly, get a great video model out. Passing in images (if one were to pretrain on images first), both temporal convolution and attention will be automatically skipped. In other words, you can use this straightforwardly in your 2d Unet and then port it over to a 3d Unet once that phase of the training is done.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 2
    Aphantasia

    Aphantasia

    CLIP + FFT/DWT/RGB = text to image/video

    ...Generating massive detailed textures, a la deepdream, fullHD/4K resolutions and above, various CLIP models (including multi-language from SBERT), continuous mode to process phrase lists (e.g. illustrating lyrics), pan/zoom motion with smooth interpolation. Direct RGB pixels optimization (very stable) depth-based 3D look (courtesy of deKxi, based on AdaBins), complex queries: text and/or image as main prompts, separate text prompts for style and to subtract (avoid) topics. Starting/resuming process from saved parameters or from an image.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    MMGeneration

    MMGeneration

    MMGeneration is a powerful toolkit for generative models

    ...We currently support training on Unconditional GANs, Internal GANs, and Image Translation Models. Support for conditional models will come soon. A plentiful toolkit containing multiple applications in GANs is provided to users. GAN interpolation, GAN projection, and GAN manipulations are integrated into our framework. It's time to play with your GANs! For the highly dynamic training in generative models, we adopt a new way to train dynamic models with MMDDP. A new design for complex loss modules is proposed for customizing the links between modules, which can achieve flexible combinations among different modules. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    CIPS-3D

    CIPS-3D

    3D-aware GANs based on NeRF (arXiv)

    3D-aware GANs based on NeRF (arXiv). This repository contains the code of the paper, CIPS-3D: A 3D-Aware Generator of GANs Based on Conditionally-Independent Pixel Synthesis. The problem of mirror symmetry refers to the sudden change of the direction of the bangs near the yaw angle of pi/2. We propose to use an auxiliary discriminator to solve this problem. Note that in the initial stage of training, the auxiliary discriminator must dominate the generator more than the main discriminator...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Build on Google Cloud with $300 in Free Credit Icon
    Build on Google Cloud with $300 in Free Credit

    New to Google Cloud? Get $300 in free credit to explore Compute Engine, BigQuery, Cloud Run, Vertex AI, and 150+ other products.

    Start your next project with $300 in free Google Cloud credit. Spin up VMs, run containers, query exabytes in BigQuery, or build AI apps with Vertex AI and Gemini. Once your credits are used, keep building with 20+ products with free monthly usage, including Compute Engine, Cloud Storage, GKE, and Cloud Run functions. Sign up to start building right away.
    Start Free Trial
  • 5
    FID score for PyTorch

    FID score for PyTorch

    Compute FID scores with PyTorch

    ...The weights and the model are exactly the same as in the official Tensorflow implementation, and were tested to give very similar results (e.g. .08 absolute error and 0.0009 relative error on LSUN, using ProGAN generated images). However, due to differences in the image interpolation implementation and library backends, FID results still differ slightly from the original implementation. In difference to the official implementation, you can choose to use a different feature layer of the Inception network instead of the default pool3 layer.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next
MongoDB Logo MongoDB