Showing 25 open source projects for "gpu"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Free and Open Source HR Software Icon
    Free and Open Source HR Software

    OrangeHRM provides a world-class HRIS experience and offers everything you and your team need to be that HR hero you know that you are.

    Give your HR team the tools they need to streamline administrative tasks, support employees, and make informed decisions with the OrangeHRM free and open source HR software.
    Learn More
  • 1
    Simple StyleGan2 for Pytorch

    Simple StyleGan2 for Pytorch

    Simplest working implementation of Stylegan2

    Simple Pytorch implementation of Stylegan2 that can be completely trained from the command-line, no coding needed. You will need a machine with a GPU and CUDA installed. You can also specify the location where intermediate results and model checkpoints should be stored. You can increase the network capacity (which defaults to 16) to improve generation results, at the cost of more memory. By default, if the training gets cut off, it will automatically resume from the last checkpointed file. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    NVIDIA NeMo

    NVIDIA NeMo

    Toolkit for conversational AI

    ...Every module can easily be customized, extended, and composed to create new conversational AI model architectures. Conversational AI architectures are typically large and require a lot of data and compute for training. NeMo uses PyTorch Lightning for easy and performant multi-GPU/multi-node mixed-precision training. Supported models: Jasper, QuartzNet, CitriNet, Conformer-CTC, Conformer-Transducer, Squeezeformer-CTC, Squeezeformer-Transducer, ContextNet, LSTM-Transducer (RNNT), LSTM-CTC. NGC collection of pre-trained speech processing models.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 3
    InvokeAI

    InvokeAI

    InvokeAI is a leading creative engine for Stable Diffusion models

    ...It provides a streamlined process with various new features and options to aid the image generation process. It runs on Windows, Mac and Linux machines, and runs on GPU cards with as little as 4 GB or RAM. InvokeAI is a leading creative engine built to empower professionals and enthusiasts alike. Generate and create stunning visual media using the latest AI-driven technologies. InvokeAI offers an industry leading Web Interface, interactive Command Line Interface, and also serves as the foundation for multiple commercial products. ...
    Downloads: 17 This Week
    Last Update:
    See Project
  • 4
    marqo

    marqo

    Tensor search for humans

    A tensor-based search and analytics engine that seamlessly integrates with your applications, websites, and workflows. Marqo is a versatile and robust search and analytics engine that can be integrated into any website or application. Due to horizontal scalability, Marqo provides lightning-fast query times, even with millions of documents. Marqo helps you configure deep-learning models like CLIP to pull semantic meaning from images. It can seamlessly handle image-to-image, image-to-text and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Mavenlink | Project Management Software Icon
    Mavenlink | Project Management Software

    Connecting People, Projects, and Profits

    Mavenlink is an innovative online resource management and project management software built for professional services teams. Offering a better way to manage projects and resources, Mavenlink transforms businesses by combining project management, collaboration, time tracking, resource management, and project financials all in one place.
    Get Started Today
  • 5
    Lightweight' GAN

    Lightweight' GAN

    Implementation of 'lightweight' GAN, proposed in ICLR 2021

    ...The main contribution of the paper is a skip-layer excitation in the generator, paired with autoencoding self-supervised learning in the discriminator. Quoting the one-line summary "converge on single gpu with few hours' training, on 1024 resolution sub-hundred images". Augmentation is essential for Lightweight GAN to work effectively in a low data setting. You can test and see how your images will be augmented before they pass into a neural network (if you use augmentation). The general recommendation is to use suitable augs for your data and as many as possible, then after some time of training disable the most destructive (for image) augs. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    KoboldCpp

    KoboldCpp

    Run GGUF models easily with a UI or API. One File. Zero Install.

    KoboldCpp is an easy-to-use AI text-generation software for GGML and GGUF models, inspired by the original KoboldAI. It's a single self-contained distributable that builds off llama.cpp and adds many additional powerful features.
    Downloads: 251 This Week
    Last Update:
    See Project
  • 7
    Stable Diffusion in Docker

    Stable Diffusion in Docker

    Run the Stable Diffusion releases in a Docker container

    Run the Stable Diffusion releases in a Docker container with txt2img, img2img, depth2img, pix2pix, upscale4x, and inpaint. Run the Stable Diffusion releases on Huggingface in a GPU-accelerated Docker container. By default, the pipeline uses the full model and weights which requires a CUDA capable GPU with 8GB+ of VRAM. It should take a few seconds to create one image. On less powerful GPUs you may need to modify some of the options; see the Examples section for more details. If you lack a suitable GPU you can set the options --device cpu and --onnx instead. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Basaran

    Basaran

    Basaran, an open-source alternative to the OpenAI text completion API

    ...Stream generation using various decoding strategies. Support both decoder-only and encoder-decoder models. Detokenizer that handles surrogates and whitespace. Multi-GPU support with optional 8-bit quantization. Real-time partial progress using server-sent events. Compatible with OpenAI API and client libraries. Comes with a fancy web-based playground. Docker images are available on Docker Hub and GitHub Packages.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 9
    G-Diffuser Bot

    G-Diffuser Bot

    Discord bot and Interface for Stable Diffusion

    The first release of the all-in-one installer version of G-Diffuser is here. This release no longer requires the installation of WSL or Docker and has a systray icon to keep track of and launch G-Diffuser components. The infinite zoom scripts have been updated with some improvements, notably a new compositer script that is hundreds of times faster than before. The first release of the all-in-one installer is here. It notably features much easier "one-click" installation and updating, as well...
    Downloads: 3 This Week
    Last Update:
    See Project
  • Unbeatably easy cloud-based digital signage platform Icon
    Unbeatably easy cloud-based digital signage platform

    Yodeck enables you to create and schedule content for your screens effortlessly from the web, using your computer or smartphone.

    With Yodeck you can create, design and schedule content easily from the web, no matter how far away you are from your screens. Use attention-grabbing media like videos, images, PDF files, Office docs, data dashboards and social media to get your message across to the people that matter most to your business.
    Start for Free
  • 10
    Point-E

    Point-E

    Point cloud diffusion for 3D model synthesis

    point-e is the official repository for Point-E, a generative model developed by OpenAI that produces 3D point clouds from textual (or image) prompts. Its principal advantage is speed: it can generate 3D assets in just 1–2 minutes on a single GPU, which is significantly faster than many competing text-to-3D models. The model works via a two-stage diffusion approach: first, it uses a text → image diffusion network to produce a synthetic 2D view consistent with the prompt; then a second diffusion model converts that image into a 3D point cloud. While it does not match the fine detail of some slower methods, the tradeoff in speed makes it practical for prototyping and interactive 3D generation. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    BCI

    BCI

    BCI: Breast Cancer Immunohistochemical Image Generation

    Breast Cancer Immunohistochemical Image Generation through Pyramid Pix2pix. We have released the trained model on BCI and LLVIP datasets. We host a competition for breast cancer immunohistochemistry image generation on Grand Challenge. Project pix2pix provides a python script to generate pix2pix training data in the form of pairs of images {A,B}, where A and B are two different depictions of the same underlying scene, these can be pairs {HE, IHC}. Then we can learn to translate A(HE images)...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    AI Chatbots based on GPT Architecture

    AI Chatbots based on GPT Architecture

    Training & Implementation of chatbots leveraging GPT-like architecture

    Training & Implementation of chatbots leveraging GPT-like architecture with the aitextgen package to enable dynamic conversations. It sure seems like there are a lot of text-generation chatbots out there, but it's hard to find a python package or model that is easy to tune around a simple text file of message data. This repo is a simple attempt to help solve that problem. ai-msgbot covers the practical use case of building a chatbot that sounds like you (or some dataset/persona you choose)...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    min(DALL·E)

    min(DALL·E)

    min(DALL·E) is a fast, minimal port of DALL·E Mini to PyTorch

    ...The only third-party dependencies are numpy, requests, pillow and torch. The required models will be downloaded to models_root if they are not already there. Set the dtype to torch.float16 to save GPU memory. If you have an Ampere architecture GPU you can use torch.bfloat16. Set the device to either cuda or "cpu". Once everything has finished initializing, call generate_image with some text as many times as you want. Use a positive seed for reproducible results. Higher values for supercondition_factor result in better agreement with the text but a narrower variety of generated images. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    DomE

    DomE

    Implements a reference architecture for creating information systems

    DomE Experiment is an implementation of a reference architecture for creating information systems from the automated evolution of the domain model. The architecture comprises elements that guarantee user access through automatically generated interfaces for various devices, integration with external information sources, data and operations security, automatic generation of analytical information, and automatic control of business processes. All these features are generated from the domain...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    bert4keras

    bert4keras

    Keras implement of transformers for humans

    ...Load the pre-trained weights of bert/roberta/albert for fine-tune. Implement the attention mask required by the language model and seq2seq. Pre-training code from zero (supports TPU, multi-GPU, please see pertaining). Compatible with keras, tf.keras.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Deep Daze

    Deep Daze

    Simple command line tool for text to image generation

    Simple command-line tool for text to image generation using OpenAI's CLIP and Siren (Implicit neural representation network). In true deep learning fashion, more layers will yield better results. Default is at 16, but can be increased to 32 depending on your resources. Technique first devised and shared by Mario Klingemann, it allows you to prime the generator network with a starting image, before being steered towards the text. Simply specify the path to the image you wish to use, and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Big Sleep

    Big Sleep

    A simple command line tool for text to image generation

    ...Ryan Murdock has done it again, combining OpenAI's CLIP and the generator from a BigGAN! This repository wraps up his work so it is easily accessible to anyone who owns a GPU. You will be able to have the GAN dream-up images using natural language with a one-line command in the terminal. User-made notebook with bug fixes and added features, like google drive integration. Images will be saved to wherever the command is invoked. If you have enough memory, you can also try using a bigger vision model released by OpenAI for improved generations. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 18
    VQGAN-CLIP web app

    VQGAN-CLIP web app

    Local image generation using VQGAN-CLIP or CLIP guided diffusion

    ...However, for regular usage across multiple sessions, I prefer a local setup that can be started up rapidly. Thus, this simple Streamlit app for generating VQGAN-CLIP images on a local environment. Be advised that you need a beefy GPU with lots of VRAM to generate images large enough to be interesting. (Hello Quadro owners!).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    CLIP Guided Diffusion

    CLIP Guided Diffusion

    A CLI tool/python module for generating images from text

    A CLI tool/python module for generating images from text using guided diffusion and CLIP from OpenAI. Text to image generation (multiple prompts with weights). Non-square Generations (experimental) Generate portrait or landscape images by specifying a number to offset the width and/or height. Uses fewer timesteps over the same diffusion schedule. Sacrifices accuracy/alignment for quicker runtime. options: - 25, 50, 150, 250, 500, 1000, ddim25,ddim50,ddim150, ddim250,ddim500,ddim1000...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    GPT Neo

    GPT Neo

    An implementation of model parallel GPT-2 and GPT-3-style models

    ...If you're just here to play with our pre-trained models, we strongly recommend you try out the HuggingFace Transformer integration. Training and inference is officially supported on TPU and should work on GPU as well. This repository will be (mostly) archived as we move focus to our GPU-specific repo, GPT-NeoX. NB, while neo can technically run a training step at 200B+ parameters, it is very inefficient at those scales. This, as well as the fact that many GPUs became available to us, among other things, prompted us to move development over to GPT-NeoX. ...
    Downloads: 15 This Week
    Last Update:
    See Project
  • 21
    gpt-2-simple

    gpt-2-simple

    Python package to easily retrain OpenAI's GPT-2 text-generating model

    ...Additionally, this package allows easier generation of text, generating to a file for easy curation, allowing for prefixes to force the text to start with a given phrase. For finetuning, it is strongly recommended to use a GPU, although you can generate using a CPU (albeit much more slowly). If you are training in the cloud, using a Colaboratory notebook or a Google Compute Engine VM w/ the TensorFlow Deep Learning image is strongly recommended. (as the GPT-2 model is hosted on GCP) You can use gpt-2-simple to retrain a model using a GPU for free in this Colaboratory notebook, which also demos additional features of the package. ...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 22
    commit-autosuggestions

    commit-autosuggestions

    A tool that AI automatically recommends commit messages

    ...However, most code changes are not made only by add of the code, and some parts of the code are deleted. We plan to slowly conquer languages that are not currently supported. To run this project, you need a flask-based inference server (GPU) and a client (commit module). If you don't have a GPU, don't worry, you can use it through Google Colab.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Deep Exemplar-based Video Colorization

    Deep Exemplar-based Video Colorization

    The source code of CVPR 2019 paper "Deep Exemplar-based Colorization"

    The source code of CVPR 2019 paper "Deep Exemplar-based Video Colorization". End-to-end network for exemplar-based video colorization. The main challenge is to achieve temporal consistency while remaining faithful to the reference style. To address this issue, we introduce a recurrent framework that unifies the semantic correspondence and color propagation steps. Both steps allow a provided reference image to guide the colorization of every frame, thus reducing accumulated propagation...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    NiftyNet

    NiftyNet

    An open-source convolutional neural networks platform for research

    An open-source convolutional neural networks platform for medical image analysis and image-guided therapy. NiftyNet is a TensorFlow-based open-source convolutional neural networks (CNNs) platform for research in medical image analysis and image-guided therapy. NiftyNet’s modular structure is designed for sharing networks and pre-trained models. Using this modular structure you can get started with established pre-trained networks using built-in tools. Adapt existing networks to your imaging...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Finetune Transformer LM

    Finetune Transformer LM

    Code for "Improving Language Understanding by Generative Pre-Training"

    ...The repository centers on reproducing the ROCStories Cloze Test result and includes a single-command training workflow to run the experiment end to end. It documents that runs are non-deterministic due to certain GPU operations and reports a median accuracy over multiple trials that is slightly below the single-run result in the paper, reflecting expected variance in practice. The project ships lightweight training, data, and analysis scripts, keeping the footprint small while making the experimental pipeline transparent. It is provided as archived, research-grade code intended for replication and study rather than continuous development.
    Downloads: 7 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next