Showing 6 open source projects for "python samples"

View related business solutions
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    Build gen AI apps with an all-in-one modern database: MongoDB Atlas

    MongoDB Atlas provides built-in vector search and a flexible document model so developers can build, scale, and run gen AI apps without stitching together multiple databases. From LLM integration to semantic search, Atlas simplifies your AI architecture—and it’s free to get started.
    Start Free
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • 1
    Generative AI Docs

    Generative AI Docs

    Documentation for Google's Gen AI site - including Gemini API & Gemma

    Generative AI Docs is Google’s official documentation repository for Gemini, Vertex AI, and related generative AI APIs. It contains guides, API references, and examples for developers building applications using Google’s large language models, text-to-image models, embeddings, and multimodal capabilities. The repository includes markdown source files that power the Google AI developer documentation site, as well as sample code snippets in Python, JavaScript, and other languages that...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 2
    YData Synthetic

    YData Synthetic

    Synthetic data generators for tabular and time-series data

    A package to generate synthetic tabular and time-series data leveraging state-of-the-art generative models. Synthetic data is artificially generated data that is not collected from real-world events. It replicates the statistical components of real data without containing any identifiable information, ensuring individuals' privacy. This repository contains material related to Generative Adversarial Networks for synthetic data generation, in particular regular tabular data and time-series. It...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Generative AI

    Generative AI

    Sample code and notebooks for Generative AI on Google Cloud

    Generative AI is a comprehensive collection of code samples, notebooks, and demo applications designed to help developers build generative-AI workflows on the Vertex AI platform. It spans multiple modalities—text, image, audio, search (RAG/grounding) and more—showing how to integrate foundation models like the Gemini family into cloud projects. The README emphasises getting started with prompts, datasets, environments and sample apps, making it ideal for both experimentation and...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 4
    Minimal text diffusion

    Minimal text diffusion

    A minimal implementation of diffusion models for text generation

    A minimal implementation of diffusion models of text: learns a diffusion model of a given text corpus, allowing to generate text samples from the learned model. The main idea was to retain just enough code to allow training a simple diffusion model and generating samples, remove image-related terms, and make it easier to use. To train a model, run scripts/train.sh. By default, this will train a model on the simple corpus. However, you can change this to any text file using the --train_data...
    Downloads: 0 This Week
    Last Update:
    See Project
  • All-in-one security tool helps you prevent ransomware and breaches. Icon
    All-in-one security tool helps you prevent ransomware and breaches.

    SIEM + Detection and Response for IT Teams

    Blumira’s detection and response platform enables faster resolution of threats to help you stop ransomware attacks and prevent data breaches. We surface real threats, providing meaningful findings so you know what to prioritize. With our 3-step rapid response, you can automatically block known threats, use our playbooks for easy remediation, or contact our security team for additional guidance. Our responsive security team helps with onboarding, triage and ongoing consultations to continuously help your organization improve your security coverage.
    Learn More
  • 5
    Reliable Metrics for Generative Models

    Reliable Metrics for Generative Models

    Code base for the precision, recall, density, and coverage metrics

    Reliable Fidelity and Diversity Metrics for Generative Models (ICML 2020). Devising indicative evaluation metrics for the image generation task remains an open problem. The most widely used metric for measuring the similarity between real and generated images has been the Fréchet Inception Distance (FID) score. Because it does not differentiate the fidelity and diversity aspects of the generated images, recent papers have introduced variants of precision and recall metrics to diagnose those...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    FID score for PyTorch

    FID score for PyTorch

    Compute FID scores with PyTorch

    This is a port of the official implementation of Fréchet Inception Distance to PyTorch. FID is a measure of similarity between two datasets of images. It was shown to correlate well with human judgement of visual quality and is most often used to evaluate the quality of samples of Generative Adversarial Networks. FID is calculated by computing the Fréchet distance between two Gaussians fitted to feature representations of the Inception network. The weights and the model are exactly the same...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next