Browse free open source C++ Generative AI and projects below. Use the toggles on the left to filter open source C++ Generative AI by OS, license, language, programming language, and project status.

  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • Photo and Video Editing APIs and SDKs Icon
    Photo and Video Editing APIs and SDKs

    Trusted by 150 million+ creators and businesses globally

    Unlock Picsart's full editing suite by embedding our Editor SDK directly into your platform. Offer your users the power of a full design suite without leaving your site.
    Learn More
  • 1
    llama.cpp

    llama.cpp

    Port of Facebook's LLaMA model in C/C++

    The llama.cpp project enables the inference of Meta's LLaMA model (and other models) in pure C/C++ without requiring a Python runtime. It is designed for efficient and fast model execution, offering easy integration for applications needing LLM-based capabilities. The repository focuses on providing a highly optimized and portable implementation for running large language models directly within C/C++ environments.
    Downloads: 50 This Week
    Last Update:
    See Project
  • 2
    GnoppixNG

    GnoppixNG

    Gnoppix Linux

    Gnoppix is a Linux distribution based on Debian Linux available in for amd64 and ARM architectures. Gnoppix is a great choice for users who want a lightweight and easy-to-use with security in mind. Gnoppix was first announced in June 2003. Currently we're working on a Gnoppix version for WSL, Mobile devices like smartphones and tablets as well.
    Leader badge
    Downloads: 240 This Week
    Last Update:
    See Project
  • 3
    KoboldCpp

    KoboldCpp

    Run GGUF models easily with a UI or API. One File. Zero Install.

    KoboldCpp is an easy-to-use AI text-generation software for GGML and GGUF models, inspired by the original KoboldAI. It's a single self-contained distributable that builds off llama.cpp and adds many additional powerful features.
    Leader badge
    Downloads: 196 This Week
    Last Update:
    See Project
  • 4
    Alpaca.cpp

    Alpaca.cpp

    Locally run an Instruction-Tuned Chat-Style LLM

    Run a fast ChatGPT-like model locally on your device. This combines the LLaMA foundation model with an open reproduction of Stanford Alpaca a fine-tuning of the base model to obey instructions (akin to the RLHF used to train ChatGPT) and a set of modifications to llama.cpp to add a chat interface. Download the zip file corresponding to your operating system from the latest release. The weights are based on the published fine-tunes from alpaca-lora, converted back into a PyTorch checkpoint with a modified script and then quantized with llama.cpp the regular way.
    Downloads: 2 This Week
    Last Update:
    See Project
  • Secure remote access solution to your private network, in the cloud or on-prem. Icon
    Secure remote access solution to your private network, in the cloud or on-prem.

    Deliver secure remote access with OpenVPN.

    OpenVPN is here to bring simple, flexible, and cost-effective secure remote access to companies of all sizes, regardless of where their resources are located.
    Get started — no credit card required.
  • 5
    pytorch-cpp

    pytorch-cpp

    C++ Implementation of PyTorch Tutorials for Everyone

    C++ Implementation of PyTorch Tutorials for Everyone. This repository provides tutorial code in C++ for deep learning researchers to learn PyTorch (i.e. Section 1 to 3) Interactive Tutorials are currently running on LibTorch Nightly Version. Libtorch only supports 64bit Windows and an x64 generator needs to be specified. Create all required script module files for pre-learned models/weights during the build. Requires installed python3 with PyTorch and torch-vision. You can choose to only build tutorials in one of the categories basics, intermediate, advanced or popular. You can build and run the tutorials (on CPU) in a Docker container using the provided Dockerfile and docker-compose.yml files.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 6
    Critterding2

    Critterding2

    Evolving Artificial Life

    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    DomE

    DomE

    Implements a reference architecture for creating information systems

    DomE Experiment is an implementation of a reference architecture for creating information systems from the automated evolution of the domain model. The architecture comprises elements that guarantee user access through automatically generated interfaces for various devices, integration with external information sources, data and operations security, automatic generation of analytical information, and automatic control of business processes. All these features are generated from the domain model, which is, in turn, continuously evolved from interactions with the user or autonomously by the system itself. Thus, an alternative to the traditional software production processes is proposed, which involves several stages and different actors, sometimes demanding a lot of time and money without obtaining the expected result. With software engineering techniques, self-adaptive systems, and artificial intelligence, it is possible, the integration between design time and execution time.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Retro

    Retro

    Retro Games in Gym

    RETRO (Retrieval-Enhanced Transformer) is a large language model architecture developed by OpenAI that augments transformer models with a retrieval mechanism. Instead of relying solely on learned parameters, RETRO retrieves relevant documents from a large external database during inference, allowing it to ground responses in external knowledge. This design improves factual accuracy, reduces hallucinations, and enables smaller models to perform comparably to much larger ones by leveraging retrieval. The repository provides code and resources for training and evaluating RETRO models, along with infrastructure for integrating retrieval into the transformer pipeline. It includes example configurations, datasets, and utilities for building retrieval-augmented generation systems. RETRO represents an important step toward combining large-scale language modeling with information retrieval, offering researchers a foundation to study hybrid approaches for scaling AI responsibly.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.