Showing 5 open source projects for "word processor python"

View related business solutions
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    Build gen AI apps with an all-in-one modern database: MongoDB Atlas

    MongoDB Atlas provides built-in vector search and a flexible document model so developers can build, scale, and run gen AI apps without stitching together multiple databases. From LLM integration to semantic search, Atlas simplifies your AI architecture—and it’s free to get started.
    Start Free
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    Swirl

    Swirl

    Swirl queries any number of data sources with APIs

    Swirl queries any number of data sources with APIs and uses spaCy and NLTK to re-rank the unified results without extracting and indexing anything! Includes zero-code configs for Apache Solr, ChatGPT, Elastic Search, OpenSearch, PostgreSQL, Google BigQuery, RequestsGet, Google PSE, NLResearch.com, Miro & more! SWIRL adapts and distributes queries to anything with a search API - search engines, databases, noSQL engines, cloud/SaaS services etc - and uses AI (Large Language Models) to re-rank...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    TextGen

    TextGen

    textgen, Text Generation models

    Implementation of Text Generation models. textgen implements a variety of text generation models, including UDA, GPT2, Seq2Seq, BART, T5, SongNet and other models, out of the box. UDA, non-core word replacement. EDA, simple data augmentation technique: similar words, synonym replacement, random word insertion, deletion, replacement. This project refers to Google's UDA (non-core word replacement) algorithm and EDA algorithm, based on TF-IDF to replace some unimportant words in sentences with...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 3
    amrlib

    amrlib

    A python library that makes AMR parsing, generation and visualization

    A python library that makes AMR parsing, generation and visualization simple. amrlib is a python module designed to make processing for Abstract Meaning Representation (AMR) simple by providing the following functions. Sentence to Graph (StoG) parsing to create AMR graphs from English sentences. Graph to Sentence (GtoS) generation for turning AMR graphs into English sentences.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    PaddleNLP

    PaddleNLP

    Easy-to-use and powerful NLP library with Awesome model zoo

    PaddleNLP It is a natural language processing development library for flying paddles, with Easy-to-use text area API, Examples of applications for multiple scenarios, and High-performance distributed training Three major features, aimed at improving the modeling efficiency of the flying oar developer's text field, aiming to improve the developer's development efficiency in the text field, and provide rich examples of NLP applications. Provide rich industry-level pre-task capabilities...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • 5
    Seq2seq Chatbot for Keras

    Seq2seq Chatbot for Keras

    This repository contains a new generative model of chatbot

    This repository contains a new generative model of chatbot based on seq2seq modeling. The trained model available here used a small dataset composed of ~8K pairs of context (the last two utterances of the dialogue up to the current point) and respective response. The data were collected from dialogues of English courses online. This trained model can be fine-tuned using a closed-domain dataset to real-world applications. The canonical seq2seq model became popular in neural machine...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next