Showing 8 open source projects for "testing"

View related business solutions
  • Build AI Apps with Gemini 3 on Vertex AI Icon
    Build AI Apps with Gemini 3 on Vertex AI

    Access Google’s most capable multimodal models. Train, test, and deploy AI with 200+ foundation models on one platform.

    Vertex AI gives developers access to Gemini 3—Google’s most advanced reasoning and coding model—plus 200+ foundation models including Claude, Llama, and Gemma. Build generative AI apps with Vertex AI Studio, customize with fine-tuning, and deploy to production with enterprise-grade MLOps. New customers get $300 in free credits.
    Try Vertex AI Free
  • AI-generated apps that pass security review Icon
    AI-generated apps that pass security review

    Stop waiting on engineering. Build production-ready internal tools with AI—on your company data, in your cloud.

    Retool lets you generate dashboards, admin panels, and workflows directly on your data. Type something like “Build me a revenue dashboard on my Stripe data” and get a working app with security, permissions, and compliance built in from day one. Whether on our cloud or self-hosted, create the internal software your team needs without compromising enterprise standards or control.
    Try Retool free
  • 1
    Langflow

    Langflow

    Low-code app builder for RAG and multi-agent AI applications

    Langflow is a low-code app builder for RAG and multi-agent AI applications. It’s Python-based and agnostic to any model, API, or database.
    Downloads: 13 This Week
    Last Update:
    See Project
  • 2
    Synthetic Data Vault (SDV)

    Synthetic Data Vault (SDV)

    Synthetic Data Generation for tabular, relational and time series data

    The Synthetic Data Vault (SDV) is a Synthetic Data Generation ecosystem of libraries that allows users to easily learn single-table, multi-table and timeseries datasets to later on generate new Synthetic Data that has the same format and statistical properties as the original dataset. Synthetic data can then be used to supplement, augment and in some cases replace real data when training Machine Learning models. Additionally, it enables the testing of Machine Learning or other data dependent software systems without the risk of exposure that comes with data disclosure. Underneath the hood it uses several probabilistic graphical modeling and deep learning based techniques. To enable a variety of data storage structures, we employ unique hierarchical generative modeling and recursive sampling techniques.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Coframe

    Coframe

    Coframe brings your UX to life with AI-powered optimization

    ...It takes minutes to integrate, and the ROI is clear to measure. Your website or app gains self-enhancing abilities with Coframe, learning from real-world performance. It's A/B testing, but with a serious upgrade. Coframe uses the latest in AI to generate copy that is tailored to your users. Resulting performance data is fed back in to continuously improve your platform's content. With Coframe, your website or app works for you 24/7, not the other way around. All it takes to get up and running is a few lines of code. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Diffusion WebUI Colab

    Diffusion WebUI Colab

    Choose your diffusion models and spin up a WebUI on Colab in one click

    The most simplistic Colab with most models included by default. Custom models can be added easily. Stable Diffusion 2.0 in testing phase. Choose your diffusion models and spin up a WebUI on Colab in one click. Share your generations in our mastodon server - (This is hosted by a third party. I am not associated with the instance in any way.) The instructions are on the Colab.
    Downloads: 0 This Week
    Last Update:
    See Project
  • AI-powered service management for IT and enterprise teams Icon
    AI-powered service management for IT and enterprise teams

    Enterprise-grade ITSM, for every business

    Give your IT, operations, and business teams the ability to deliver exceptional services—without the complexity. Maximize operational efficiency with refreshingly simple, AI-powered Freshservice.
    Try it Free
  • 5
    GPT Neo

    GPT Neo

    An implementation of model parallel GPT-2 and GPT-3-style models

    ...Some results for GPT-2 and GPT-3 are inconsistent with the values reported in the respective papers. We are currently looking into why, and would greatly appreciate feedback and further testing of our eval harness.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 6
    CRSLab

    CRSLab

    CRSLab is an open-source toolkit

    ...We have preprocessed these datasets to support these models, and release for downloading. Extensive and standard evaluation protocols: We support a series of widely-adopted evaluation protocols for testing and comparing different CRS. General and extensible structure: We design a general and extensible structure to unify various conversational recommendation datasets and models, in which we integrate various built-in interfaces and functions for quickly development. Easy to get started: We provide simple yet flexible configuration for new researchers to quickly start in our library. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    A Netflix film cover generator Nuxt.js

    A Netflix film cover generator Nuxt.js

    A tool for generating Netflix show image

    We love Netflix, but we love memes even more. We thought that helping Netflix on their UI/UX testing with a tool that can create show images easily with an export function to png. A tool for generating Netflix shows an image. You can visit the demo website hosted on Netlify. This is an open-source tool and it is available on Github. On this tool you have a full editable canvas where you can edit content, text position, text dimension, gradient position and change the background image. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    TGAN

    TGAN

    Generative adversarial training for generating synthetic tabular data

    ...Also, although it is not strictly required, the usage of a virtualenv is highly recommended in order to avoid interfering with other software installed in the system where TGAN is run. For development, you can use make install-develop instead in order to install all the required dependencies for testing and code listing. In order to be able to sample new synthetic data, TGAN first needs to be fitted to existing data.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next
MongoDB Logo MongoDB