Showing 5 open source projects for "ofn-extract-objects.py"

View related business solutions
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    Build gen AI apps with an all-in-one modern database: MongoDB Atlas

    MongoDB Atlas provides built-in vector search and a flexible document model so developers can build, scale, and run gen AI apps without stitching together multiple databases. From LLM integration to semantic search, Atlas simplifies your AI architecture—and it’s free to get started.
    Start Free
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    scraper-with-chatgpt
    It is a powerful data scraping tool that helps you extract information from various online sources. Easily collect data from Google SERP, Maps, Shopify, Zillow, and more. With a user-friendly interface, you can scrape and save data in JSON or Excel formats. Unlock insights from the web effortlessly with scrape-it.cloud API.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Emb-GAM

    Emb-GAM

    An interpretable and efficient predictor using pre-trained models

    ...In contrast, generalized additive models (GAMs) can maintain interpretability but often suffer from poor prediction performance due to their inability to effectively capture feature interactions. In this work, we aim to bridge this gap by using pre-trained neural language models to extract embeddings for each input before learning a linear model in the embedding space. The final model (which we call Emb-GAM) is a transparent, linear function of its input features and feature interactions. Leveraging the language model allows Emb-GAM to learn far fewer linear coefficients, model larger interactions, and generalize well to novel inputs. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    AnimeGAN

    AnimeGAN

    A simple PyTorch Implementation of Generative Adversarial Networks

    A simple PyTorch Implementation of Generative Adversarial Networks, focusing on anime face drawing. The images are generated from a DCGAN model trained on 143,000 anime character faces for 100 epochs. Manipulating latent codes enables the transition from images in the first row to the last row. The images are not clean, some outliers can be observed, which degrades the quality of the generated images. Anime-style images of 126 tags are collected from danbooru.donmai.us using the crawler tool...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 4
    ML for Trading

    ML for Trading

    Code for machine learning for algorithmic trading, 2nd edition

    ...Covers key aspects of data sourcing, financial feature engineering, and portfolio management. The design and evaluation of long-short strategies based on a broad range of ML algorithms, how to extract tradeable signals from financial text data like SEC filings, earnings call transcripts or financial news. Using deep learning models like CNN and RNN with financial and alternative data, and how to generate synthetic data with Generative Adversarial Networks, as well as training a trading agent using deep reinforcement learning.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • 5
    Deep Exemplar-based Video Colorization

    Deep Exemplar-based Video Colorization

    The source code of CVPR 2019 paper "Deep Exemplar-based Colorization"

    ...Experiments show our result is superior to the state-of-the-art methods both quantitatively and qualitatively. In order to colorize your own video, it requires to extract the video frames, and provide a reference image as an example.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next