Showing 30 open source projects for "model train design"

View related business solutions
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • Free and Open Source HR Software Icon
    Free and Open Source HR Software

    OrangeHRM provides a world-class HRIS experience and offers everything you and your team need to be that HR hero you know that you are.

    Give your HR team the tools they need to streamline administrative tasks, support employees, and make informed decisions with the OrangeHRM free and open source HR software.
    Learn More
  • 1
    YData Synthetic

    YData Synthetic

    Synthetic data generators for tabular and time-series data

    A package to generate synthetic tabular and time-series data leveraging state-of-the-art generative models. Synthetic data is artificially generated data that is not collected from real-world events. It replicates the statistical components of real data without containing any identifiable information, ensuring individuals' privacy. This repository contains material related to Generative Adversarial Networks for synthetic data generation, in particular regular tabular data and time-series. It...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    NVIDIA NeMo

    NVIDIA NeMo

    Toolkit for conversational AI

    ...NeMo has separate collections for Automatic Speech Recognition (ASR), Natural Language Processing (NLP), and Text-to-Speech (TTS) models. Each collection consists of prebuilt modules that include everything needed to train on your data. Every module can easily be customized, extended, and composed to create new conversational AI model architectures. Conversational AI architectures are typically large and require a lot of data and compute for training. NeMo uses PyTorch Lightning for easy and performant multi-GPU/multi-node mixed-precision training. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 3
    DALL-E 2 - Pytorch

    DALL-E 2 - Pytorch

    Implementation of DALL-E 2, OpenAI's updated text-to-image synthesis

    Implementation of DALL-E 2, OpenAI's updated text-to-image synthesis neural network, in Pytorch. The main novelty seems to be an extra layer of indirection with the prior network (whether it is an autoregressive transformer or a diffusion network), which predicts an image embedding based on the text embedding from CLIP. Specifically, this repository will only build out the diffusion prior network, as it is the best performing variant (but which incidentally involves a causal transformer as...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 4
    TextGen

    TextGen

    textgen, Text Generation models

    Implementation of Text Generation models. textgen implements a variety of text generation models, including UDA, GPT2, Seq2Seq, BART, T5, SongNet and other models, out of the box. UDA, non-core word replacement. EDA, simple data augmentation technique: similar words, synonym replacement, random word insertion, deletion, replacement. This project refers to Google's UDA (non-core word replacement) algorithm and EDA algorithm, based on TF-IDF to replace some unimportant words in sentences with...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Next-Gen Encryption for Post-Quantum Security | CLEAR by Quantum Knight Icon
    Next-Gen Encryption for Post-Quantum Security | CLEAR by Quantum Knight

    Lock Down Any Resource, Anywhere, Anytime

    CLEAR by Quantum Knight is a FIPS-140-3 validated encryption SDK engineered for enterprises requiring top-tier security. Offering robust post-quantum cryptography, CLEAR secures files, streaming media, databases, and networks with ease across over 30 modern platforms. Its compact design, smaller than a single smartphone image, ensures maximum efficiency and low energy consumption.
    Learn More
  • 5
    Stable Diffusion in Docker

    Stable Diffusion in Docker

    Run the Stable Diffusion releases in a Docker container

    Run the Stable Diffusion releases in a Docker container with txt2img, img2img, depth2img, pix2pix, upscale4x, and inpaint. Run the Stable Diffusion releases on Huggingface in a GPU-accelerated Docker container. By default, the pipeline uses the full model and weights which requires a CUDA capable GPU with 8GB+ of VRAM. It should take a few seconds to create one image. On less powerful GPUs you may need to modify some of the options; see the Examples section for more details. If you lack a...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    DALL-E in Pytorch

    DALL-E in Pytorch

    Implementation / replication of DALL-E, OpenAI's Text to Image

    ...Kobiso, a research engineer from Naver, has trained on the CUB200 dataset here, using full and deepspeed sparse attention. You can also skip the training of the VAE altogether, using the pretrained model released by OpenAI! The wrapper class should take care of downloading and caching the model for you auto-magically. You can also use the pretrained VAE offered by the authors of Taming Transformers! Currently only the VAE with a codebook size of 1024 is offered, with the hope that it may train a little faster than OpenAI's, which has a size of 8192. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Alpaca.cpp

    Alpaca.cpp

    Locally run an Instruction-Tuned Chat-Style LLM

    Run a fast ChatGPT-like model locally on your device. This combines the LLaMA foundation model with an open reproduction of Stanford Alpaca a fine-tuning of the base model to obey instructions (akin to the RLHF used to train ChatGPT) and a set of modifications to llama.cpp to add a chat interface. Download the zip file corresponding to your operating system from the latest release.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 8
    VALL-E

    VALL-E

    PyTorch implementation of VALL-E (Zero-Shot Text-To-Speech)

    We introduce a language modeling approach for text to speech synthesis (TTS). Specifically, we train a neural codec language model (called VALL-E) using discrete codes derived from an off-the-shelf neural audio codec model, and regard TTS as a conditional language modeling task rather than continuous signal regression as in previous work. During the pre-training stage, we scale up the TTS training data to 60K hours of English speech which is hundreds of times larger than existing systems. ...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 9
    MMGeneration

    MMGeneration

    MMGeneration is a powerful toolkit for generative models

    ...GAN interpolation, GAN projection, and GAN manipulations are integrated into our framework. It's time to play with your GANs! For the highly dynamic training in generative models, we adopt a new way to train dynamic models with MMDDP. A new design for complex loss modules is proposed for customizing the links between modules, which can achieve flexible combinations among different modules. Conditional GANs have been supported in our toolkit. More methods and pre-trained weights will come soon.
    Downloads: 0 This Week
    Last Update:
    See Project
  • G-P - Global EOR Solution Icon
    G-P - Global EOR Solution

    Companies searching for an Employer of Record solution to mitigate risk and manage compliance, taxes, benefits, and payroll anywhere in the world

    With G-P's industry-leading Employer of Record (EOR) and Contractor solutions, you can hire, onboard and manage teams in 180+ countries — quickly and compliantly — without setting up entities.
    Learn More
  • 10
    GPT-NeoX

    GPT-NeoX

    Implementation of model parallel autoregressive transformers on GPUs

    ...If you are not looking to train models with billions of parameters from scratch, this is likely the wrong library to use. For generic inference needs, we recommend you use the Hugging Face transformers library instead which supports GPT-NeoX models.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 11
    TextBox

    TextBox

    A text generation library with pre-trained language models github.com

    TextBox 2.0 is an up-to-date text generation library based on Python and PyTorch focusing on building a unified and standardized pipeline for applying pre-trained language models to text generation. From a task perspective, we consider 13 common text generation tasks such as translation, story generation, and style transfer, and their corresponding 83 widely-used datasets. From a model perspective, we incorporate 47 pre-trained language models/modules covering the categories of general,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Minimal text diffusion

    Minimal text diffusion

    A minimal implementation of diffusion models for text generation

    A minimal implementation of diffusion models of text: learns a diffusion model of a given text corpus, allowing to generate text samples from the learned model. The main idea was to retain just enough code to allow training a simple diffusion model and generating samples, remove image-related terms, and make it easier to use. To train a model, run scripts/train.sh. By default, this will train a model on the simple corpus.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    BCI

    BCI

    BCI: Breast Cancer Immunohistochemical Image Generation

    Breast Cancer Immunohistochemical Image Generation through Pyramid Pix2pix. We have released the trained model on BCI and LLVIP datasets. We host a competition for breast cancer immunohistochemistry image generation on Grand Challenge. Project pix2pix provides a python script to generate pix2pix training data in the form of pairs of images {A,B}, where A and B are two different depictions of the same underlying scene, these can be pairs {HE, IHC}. Then we can learn to translate A(HE images)...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    AI Chatbots based on GPT Architecture

    AI Chatbots based on GPT Architecture

    Training & Implementation of chatbots leveraging GPT-like architecture

    Training & Implementation of chatbots leveraging GPT-like architecture with the aitextgen package to enable dynamic conversations. It sure seems like there are a lot of text-generation chatbots out there, but it's hard to find a python package or model that is easy to tune around a simple text file of message data. This repo is a simple attempt to help solve that problem. ai-msgbot covers the practical use case of building a chatbot that sounds like you (or some dataset/persona you choose)...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    LaMDA-pytorch

    LaMDA-pytorch

    Open-source pre-training implementation of Google's LaMDA in PyTorch

    Open-source pre-training implementation of Google's LaMDA research paper in PyTorch. The totally not sentient AI. This repository will cover the 2B parameter implementation of the pre-training architecture as that is likely what most can afford to train. You can review Google's latest blog post from 2022 which details LaMDA here. You can also view their previous blog post from 2021 on the model.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    DomE

    DomE

    Implements a reference architecture for creating information systems

    DomE Experiment is an implementation of a reference architecture for creating information systems from the automated evolution of the domain model. The architecture comprises elements that guarantee user access through automatically generated interfaces for various devices, integration with external information sources, data and operations security, automatic generation of analytical information, and automatic control of business processes. All these features are generated from the domain model, which is, in turn, continuously evolved from interactions with the user or autonomously by the system itself. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Texar-PyTorch

    Texar-PyTorch

    Integrating the Best of TF into PyTorch, for Machine Learning

    ...Texar-PyTorch integrates many of the best features of TensorFlow into PyTorch, delivering highly usable and customizable modules superior to PyTorch native ones. Texar-PyTorch (this repo) and Texar-TF have mostly the same interfaces. Both further combine the best design of TF and PyTorch. Data processing, model architectures, loss functions, training and inference algorithms, evaluation, etc.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Big Sleep

    Big Sleep

    A simple command line tool for text to image generation

    A simple command line tool for text to image generation, using OpenAI's CLIP and a BigGAN. Ryan Murdock has done it again, combining OpenAI's CLIP and the generator from a BigGAN! This repository wraps up his work so it is easily accessible to anyone who owns a GPU. You will be able to have the GAN dream-up images using natural language with a one-line command in the terminal. User-made notebook with bug fixes and added features, like google drive integration. Images will be saved to...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    TorchGAN

    TorchGAN

    Research Framework for easy and efficient training of GANs

    The torchgan package consists of various generative adversarial networks and utilities that have been found useful in training them. This package provides an easy-to-use API which can be used to train popular GANs as well as develop newer variants. The core idea behind this project is to facilitate easy and rapid generative adversarial model research. TorchGAN is a Pytorch-based framework for designing and developing Generative Adversarial Networks. This framework has been designed to provide building blocks for popular GANs and also to allow customization for cutting-edge research. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    GPT Neo

    GPT Neo

    An implementation of model parallel GPT-2 and GPT-3-style models

    An implementation of model & data parallel GPT3-like models using the mesh-tensorflow library. If you're just here to play with our pre-trained models, we strongly recommend you try out the HuggingFace Transformer integration. Training and inference is officially supported on TPU and should work on GPU as well. This repository will be (mostly) archived as we move focus to our GPU-specific repo, GPT-NeoX. NB, while neo can technically run a training step at 200B+ parameters, it is very...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 21
    Old Photo Restoration

    Old Photo Restoration

    Bringing Old Photo Back to Life (CVPR 2020 oral)

    ...Unlike conventional restoration tasks that can be solved through supervised learning, the degradation in real photos is complex and the domain gap between synthetic images and real old photos makes the network fail to generalize. Therefore, we propose a novel triplet domain translation network by leveraging real photos along with massive synthetic image pairs. Specifically, we train two variational autoencoders (VAEs) to respectively transform old photos and clean photos into two latent spaces. And the translation between these two latent spaces is learned with synthetic paired data. This translation generalizes well to real photos because the domain gap is closed in the compact latent space. Besides, to address multiple degradations mixed in one old photo, we design a global branch with a partial nonlocal block targeting to the structured defects, such as scratches and dust spots.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 22
    Text Gen

    Text Gen

    Almost state of art text generation library

    Almost state of art text generation library. Text gen is a python library that allow you build a custom text generation model with ease. Something sweet built with Tensorflow and Pytorch(coming soon). Load your data, your data must be in a text format. Download the example data from the example folder. Tune your model to know the best optimizer, activation method to use.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    ML for Trading

    ML for Trading

    Code for machine learning for algorithmic trading, 2nd edition

    On over 800 pages, this revised and expanded 2nd edition demonstrates how ML can add value to algorithmic trading through a broad range of applications. Organized in four parts and 24 chapters, it covers the end-to-end workflow from data sourcing and model development to strategy backtesting and evaluation. Covers key aspects of data sourcing, financial feature engineering, and portfolio management. The design and evaluation of long-short strategies based on a broad range of ML algorithms, how to extract tradeable signals from financial text data like SEC filings, earnings call transcripts or financial news. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    HyperGAN

    HyperGAN

    Composable GAN framework with api and user interface

    A composable GAN built for developers, researchers, and artists. HyperGAN builds generative adversarial networks in PyTorch and makes them easy to train and share. HyperGAN is currently in pre-release and open beta. Everyone will have different goals when using hypergan. HyperGAN is currently beta. We are still searching for a default cross-data-set configuration. Each of the examples supports search. Automated search can help find good configurations. If you are unsure, you can start with...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 25
    TFKit

    TFKit

    Handling multiple nlp task in one pipeline

    ...It leverages the use of transformers on many tasks with different models in this all-in-one framework. All you need is a little change of config. You can use tfkit for model training and evaluation with tfkit-train and tfkit-eval. The key to combine different task together is to make different task with same data format. All data will be in csv format - tfkit will use csv for all task, normally it will have two columns, first columns is the input of models, the second column is the output of models. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • Next