Showing 49 open source projects for "machine learning python"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Business Automation Software for SMBs Icon
    Business Automation Software for SMBs

    Fed up with not having the time, money and resources to grow your business?

    The only software you need to increase cash flow, optimize resource utilization, and take control of your assets and inventory.
    Learn More
  • 1
    Orion

    Orion

    A machine learning library for detecting anomalies in signals

    Orion is a machine-learning library built for unsupervised time series anomaly detection. Such signals are generated by a wide variety of systems, few examples include telemetry data generated by satellites, signals from wind turbines, and even stock market price tickers. We built this to provide one place where users can find the latest and greatest in machine learning and deep learning world including our own innovations.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Albumentations

    Albumentations

    Fast image augmentation library and an easy-to-use wrapper

    ...Albumentations works well with data from different domains: photos, medical images, satellite imagery, manufacturing and industrial applications, Generative Adversarial Networks. Albumentations can work with various deep learning frameworks such as PyTorch and Keras.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    NVIDIA NeMo

    NVIDIA NeMo

    Toolkit for conversational AI

    NVIDIA NeMo, part of the NVIDIA AI platform, is a toolkit for building new state-of-the-art conversational AI models. NeMo has separate collections for Automatic Speech Recognition (ASR), Natural Language Processing (NLP), and Text-to-Speech (TTS) models. Each collection consists of prebuilt modules that include everything needed to train on your data. Every module can easily be customized, extended, and composed to create new conversational AI model architectures. Conversational AI...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 4
    Synthetic Data Vault (SDV)

    Synthetic Data Vault (SDV)

    Synthetic Data Generation for tabular, relational and time series data

    The Synthetic Data Vault (SDV) is a Synthetic Data Generation ecosystem of libraries that allows users to easily learn single-table, multi-table and timeseries datasets to later on generate new Synthetic Data that has the same format and statistical properties as the original dataset. Synthetic data can then be used to supplement, augment and in some cases replace real data when training Machine Learning models. Additionally, it enables the testing of Machine Learning or other data dependent software systems without the risk of exposure that comes with data disclosure. Underneath the hood it uses several probabilistic graphical modeling and deep learning based techniques. To enable a variety of data storage structures, we employ unique hierarchical generative modeling and recursive sampling techniques.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Award-Winning Medical Office Software Designed for Your Specialty Icon
    Award-Winning Medical Office Software Designed for Your Specialty

    Succeed and scale your practice with cloud-based, data-backed, AI-powered healthcare software.

    RXNT is an ambulatory healthcare technology pioneer that empowers medical practices and healthcare organizations to succeed and scale through innovative, data-backed, AI-powered software.
    Learn More
  • 5
    Lightweight' GAN

    Lightweight' GAN

    Implementation of 'lightweight' GAN, proposed in ICLR 2021

    Implementation of 'lightweight' GAN proposed in ICLR 2021, in Pytorch. The main contribution of the paper is a skip-layer excitation in the generator, paired with autoencoding self-supervised learning in the discriminator. Quoting the one-line summary "converge on single gpu with few hours' training, on 1024 resolution sub-hundred images". Augmentation is essential for Lightweight GAN to work effectively in a low data setting. You can test and see how your images will be augmented before...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Python Client For NLP Cloud

    Python Client For NLP Cloud

    NLP Cloud serves high performance pre-trained or custom models for NER

    NLP Cloud serves high performance pre-trained or custom models for NER, sentiment-analysis, classification, summarization, dialogue summarization, paraphrasing, intent classification, product description and ad generation, chatbot, grammar and spelling correction, keywords and keyphrases extraction, text generation, image generation, blog post generation, source code generation, question answering, automatic speech recognition, machine translation, language detection, semantic search,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Megatron

    Megatron

    Ongoing research training transformer models at scale

    Megatron is a large, powerful transformer developed by the Applied Deep Learning Research team at NVIDIA. This repository is for ongoing research on training large transformer language models at scale. We developed efficient, model-parallel (tensor, sequence, and pipeline), and multi-node pre-training of transformer based models such as GPT, BERT, and T5 using mixed precision. Megatron is also used in NeMo Megatron, a framework to help enterprises overcome the challenges of building and...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 8
    marqo

    marqo

    Tensor search for humans

    A tensor-based search and analytics engine that seamlessly integrates with your applications, websites, and workflows. Marqo is a versatile and robust search and analytics engine that can be integrated into any website or application. Due to horizontal scalability, Marqo provides lightning-fast query times, even with millions of documents. Marqo helps you configure deep-learning models like CLIP to pull semantic meaning from images. It can seamlessly handle image-to-image, image-to-text and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    SDGym

    SDGym

    Benchmarking synthetic data generation methods

    ...Or write your own custom machine learning model. In addition to performance and memory usage, you can also measure synthetic data quality and privacy through a variety of metrics. Install SDGym using pip or conda. We recommend using a virtual environment to avoid conflicts with other software on your device.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Reach Your Audience with Rise Vision, the #1 Cloud Digital Signage Software Solution Icon
    Reach Your Audience with Rise Vision, the #1 Cloud Digital Signage Software Solution

    K-12 Schools, Higher Education, Businesses, Restaurants

    Rise Vision is the #1 digital signage company, offering easy-to-use cloud digital signage software compatible with any player across multiple screens. Forget about static displays. Save time and boost sales with 500+ customizable content templates for your screens. If you ever need help, get free training and exceptionally fast support.
    Learn More
  • 10
    node-red-contrib-custom-chatgpt
    A Node-RED node that interacts with OpenAI machine learning models like "ChatGPT". Install with the built-in Node-RED Palette manager. When editing the properties of the node, to get your OPENAI_API_KEY log in to ChatGPT. Create a new secret key" then copy and paste the "API key" into the node API_KEY property value. msg.payload should be a well-written prompt that provides enough information for the model to know what you want and how it should respond.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Deep Lake

    Deep Lake

    Data Lake for Deep Learning. Build, manage, and query datasets

    Deep Lake (formerly known as Activeloop Hub) is a data lake for deep learning applications. Our open-source dataset format is optimized for rapid streaming and querying of data while training models at scale, and it includes a simple API for creating, storing, and collaborating on AI datasets of any size. It can be deployed locally or in the cloud, and it enables you to store all of your data in one place, ranging from simple annotations to large videos. Deep Lake is used by Google, Waymo,...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 12
    Make-A-Video - Pytorch (wip)

    Make-A-Video - Pytorch (wip)

    Implementation of Make-A-Video, new SOTA text to video generator

    Implementation of Make-A-Video, new SOTA text to video generator from Meta AI, in Pytorch. They combine pseudo-3d convolutions (axial convolutions) and temporal attention and show much better temporal fusion. The pseudo-3d convolutions isn't a new concept. It has been explored before in other contexts, say for protein contact prediction as "dimensional hybrid residual networks". The gist of the paper comes down to, take a SOTA text-to-image model (here they use DALL-E2, but the same learning...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 13
    LlamaIndex

    LlamaIndex

    Central interface to connect your LLM's with external data

    LlamaIndex (GPT Index) is a project that provides a central interface to connect your LLM's with external data. LlamaIndex is a simple, flexible interface between your external data and LLMs. It provides the following tools in an easy-to-use fashion. Provides indices over your unstructured and structured data for use with LLM's. These indices help to abstract away common boilerplate and pain points for in-context learning. Dealing with prompt limitations (e.g. 4096 tokens for Davinci) when...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    OpenAI DALL·E AsyncImage SwiftUI

    OpenAI DALL·E AsyncImage SwiftUI

    OpenAI swift async text to image for SwiftUI app using OpenAI

    ...In machine learning, diffusion models, also known as diffusion probabilistic models, are a class of latent variable models. They are Markov chains trained using variational inference. The goal of diffusion models is to learn the latent structure of a dataset by modeling the way in which data points diffuse through the latent space.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Dream Textures

    Dream Textures

    Stable Diffusion built-in to Blender

    Create textures, concept art, background assets, and more with a simple text prompt. Use the 'Seamless' option to create textures that tile perfectly with no visible seam. Texture entire scenes with 'Project Dream Texture' and depth to image. Re-style animations with the Cycles render pass. Run the models on your machine to iterate without slowdowns from a service. Create textures, concept art, and more with text prompts. Learn how to use the various configuration options to get exactly what...
    Downloads: 9 This Week
    Last Update:
    See Project
  • 16
    CTGAN

    CTGAN

    Conditional GAN for generating synthetic tabular data

    CTGAN is a collection of Deep Learning based synthetic data generators for single table data, which are able to learn from real data and generate synthetic data with high fidelity. If you're just getting started with synthetic data, we recommend installing the SDV library which provides user-friendly APIs for accessing CTGAN. The SDV library provides wrappers for preprocessing your data as well as additional usability features like constraints. When using the CTGAN library directly, you may...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Recurrent Interface Network (RIN)

    Recurrent Interface Network (RIN)

    Implementation of Recurrent Interface Network (RIN)

    Implementation of Recurrent Interface Network (RIN), for highly efficient generation of images and video without cascading networks, in Pytorch. The author unawaredly reinvented the induced set-attention block from the set transformers paper. They also combine this with the self-conditioning technique from the Bit Diffusion paper, specifically for the latents. The last ingredient seems to be a new noise function based around the sigmoid, which the author claims is better than cosine...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Simple StyleGan2 for Pytorch

    Simple StyleGan2 for Pytorch

    Simplest working implementation of Stylegan2

    Simple Pytorch implementation of Stylegan2 that can be completely trained from the command-line, no coding needed. You will need a machine with a GPU and CUDA installed. You can also specify the location where intermediate results and model checkpoints should be stored. You can increase the network capacity (which defaults to 16) to improve generation results, at the cost of more memory. By default, if the training gets cut off, it will automatically resume from the last checkpointed file....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Critterding2

    Critterding2

    Evolving Artificial Life

    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    texturize

    texturize

    Generate photo-realistic textures based on source images

    Generate photo-realistic textures based on source images. Remix, remake, mashup! Useful if you want to create variations on a theme or elaborate on an existing texture. A command-line tool and Python library to automatically generate new textures similar to a source image or photograph. It's useful in the context of computer graphics if you want to make variations on a theme or expand the size of an existing texture. This software is powered by deep learning technology, using a combination of convolution networks and example-based optimization to synthesize images. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    VALL-E

    VALL-E

    PyTorch implementation of VALL-E (Zero-Shot Text-To-Speech)

    We introduce a language modeling approach for text to speech synthesis (TTS). Specifically, we train a neural codec language model (called VALL-E) using discrete codes derived from an off-the-shelf neural audio codec model, and regard TTS as a conditional language modeling task rather than continuous signal regression as in previous work. During the pre-training stage, we scale up the TTS training data to 60K hours of English speech which is hundreds of times larger than existing systems....
    Downloads: 3 This Week
    Last Update:
    See Project
  • 22
    GPT-NeoX

    GPT-NeoX

    Implementation of model parallel autoregressive transformers on GPUs

    This repository records EleutherAI's library for training large-scale language models on GPUs. Our current framework is based on NVIDIA's Megatron Language Model and has been augmented with techniques from DeepSpeed as well as some novel optimizations. We aim to make this repo a centralized and accessible place to gather techniques for training large-scale autoregressive language models, and accelerate research into large-scale training. For those looking for a TPU-centric codebase, we...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 23
    CPT

    CPT

    CPT: A Pre-Trained Unbalanced Transformer

    A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Generation. We replace the old BERT vocabulary with a larger one of size 51271 built from the training data, in which we 1) add missing 6800+ Chinese characters (most of them are traditional Chinese characters); 2) remove redundant tokens (e.g. Chinese character tokens with ## prefix); 3) add some English tokens to reduce OOV. Position Embeddings We extend the max_position_embeddings from 512 to 1024. We...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 24
    Emb-GAM

    Emb-GAM

    An interpretable and efficient predictor using pre-trained models

    Deep learning models have achieved impressive prediction performance but often sacrifice interpretability, a critical consideration in high-stakes domains such as healthcare or policymaking. In contrast, generalized additive models (GAMs) can maintain interpretability but often suffer from poor prediction performance due to their inability to effectively capture feature interactions. In this work, we aim to bridge this gap by using pre-trained neural language models to extract embeddings for...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    StudioGAN

    StudioGAN

    StudioGAN is a Pytorch library providing implementations of networks

    StudioGAN is a Pytorch library providing implementations of representative Generative Adversarial Networks (GANs) for conditional/unconditional image generation. StudioGAN aims to offer an identical playground for modern GANs so that machine learning researchers can readily compare and analyze a new idea. Moreover, StudioGAN provides an unprecedented-scale benchmark for generative models. The benchmark includes results from GANs (BigGAN-Deep, StyleGAN-XL), auto-regressive models (MaskGIT, RQ-Transformer), and Diffusion models (LSGM++, CLD-SGM, ADM-G-U). StudioGAN is a self-contained library that provides 7 GAN architectures, 9 conditioning methods, 4 adversarial losses, 13 regularization modules, 6 augmentation modules, 8 evaluation metrics, and 5 evaluation backbones. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • Next