Showing 143 open source projects for "ai made in python"

View related business solutions
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • 1
    YData Synthetic

    YData Synthetic

    Synthetic data generators for tabular and time-series data

    A package to generate synthetic tabular and time-series data leveraging state-of-the-art generative models. Synthetic data is artificially generated data that is not collected from real-world events. It replicates the statistical components of real data without containing any identifiable information, ensuring individuals' privacy. This repository contains material related to Generative Adversarial Networks for synthetic data generation, in particular regular tabular data and time-series. It...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    BertViz

    BertViz

    BertViz: Visualize Attention in NLP Models (BERT, GPT2, BART, etc.)

    BertViz is an interactive tool for visualizing attention in Transformer language models such as BERT, GPT2, or T5. It can be run inside a Jupyter or Colab notebook through a simple Python API that supports most Huggingface models. BertViz extends the Tensor2Tensor visualization tool by Llion Jones, providing multiple views that each offer a unique lens into the attention mechanism. The head view visualizes attention for one or more attention heads in the same layer. It is based on the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Lightweight' GAN

    Lightweight' GAN

    Implementation of 'lightweight' GAN, proposed in ICLR 2021

    Implementation of 'lightweight' GAN proposed in ICLR 2021, in Pytorch. The main contribution of the paper is a skip-layer excitation in the generator, paired with autoencoding self-supervised learning in the discriminator. Quoting the one-line summary "converge on single gpu with few hours' training, on 1024 resolution sub-hundred images". Augmentation is essential for Lightweight GAN to work effectively in a low data setting. You can test and see how your images will be augmented before...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    LlamaIndex

    LlamaIndex

    Central interface to connect your LLM's with external data

    LlamaIndex (GPT Index) is a project that provides a central interface to connect your LLM's with external data. LlamaIndex is a simple, flexible interface between your external data and LLMs. It provides the following tools in an easy-to-use fashion. Provides indices over your unstructured and structured data for use with LLM's. These indices help to abstract away common boilerplate and pain points for in-context learning. Dealing with prompt limitations (e.g. 4096 tokens for Davinci) when...
    Downloads: 3 This Week
    Last Update:
    See Project
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 5
    Deep Lake

    Deep Lake

    Data Lake for Deep Learning. Build, manage, and query datasets

    Deep Lake (formerly known as Activeloop Hub) is a data lake for deep learning applications. Our open-source dataset format is optimized for rapid streaming and querying of data while training models at scale, and it includes a simple API for creating, storing, and collaborating on AI datasets of any size. It can be deployed locally or in the cloud, and it enables you to store all of your data in one place, ranging from simple annotations to large videos. Deep Lake is used by Google, Waymo,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Orion

    Orion

    A machine learning library for detecting anomalies in signals

    Orion is a machine-learning library built for unsupervised time series anomaly detection. Such signals are generated by a wide variety of systems, few examples include telemetry data generated by satellites, signals from wind turbines, and even stock market price tickers. We built this to provide one place where users can find the latest and greatest in machine learning and deep learning world including our own innovations. Abstract away from the users the nitty-gritty about preprocessing,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Swirl

    Swirl

    Swirl queries any number of data sources with APIs

    ...Includes zero-code configs for Apache Solr, ChatGPT, Elastic Search, OpenSearch, PostgreSQL, Google BigQuery, RequestsGet, Google PSE, NLResearch.com, Miro & more! SWIRL adapts and distributes queries to anything with a search API - search engines, databases, noSQL engines, cloud/SaaS services etc - and uses AI (Large Language Models) to re-rank the unified results without extracting and indexing anything. It's intended for use by developers and data scientists who want to solve multi-silo search problems from enterprise search to new monitoring & alerting solutions that push information to users continuously. Built on the Python/Django/RabbitMQ stack, SWIRL includes connectors to Apache Solr, ChatGPT, Elastic, OpenSearch | PostgreSQL, Google BigQuery plus generic HTTP/GET/JSON with configurations for premium services.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    SentenceTransformers

    SentenceTransformers

    Multilingual sentence & image embeddings with BERT

    SentenceTransformers is a Python framework for state-of-the-art sentence, text and image embeddings. The initial work is described in our paper Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks. You can use this framework to compute sentence / text embeddings for more than 100 languages. These embeddings can then be compared e.g. with cosine-similarity to find sentences with a similar meaning. This can be useful for semantic textual similar, semantic search, or paraphrase...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    CTGAN

    CTGAN

    Conditional GAN for generating synthetic tabular data

    CTGAN is a collection of Deep Learning based synthetic data generators for single table data, which are able to learn from real data and generate synthetic data with high fidelity. If you're just getting started with synthetic data, we recommend installing the SDV library which provides user-friendly APIs for accessing CTGAN. The SDV library provides wrappers for preprocessing your data as well as additional usability features like constraints. When using the CTGAN library directly, you may...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Build Securely on Azure with Proven Frameworks Icon
    Build Securely on Azure with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 10
    BERTopic

    BERTopic

    Leveraging BERT and c-TF-IDF to create easily interpretable topics

    BERTopic is a topic modeling technique that leverages transformers and c-TF-IDF to create dense clusters allowing for easily interpretable topics whilst keeping important words in the topic descriptions. BERTopic supports guided, supervised, semi-supervised, manual, long-document, hierarchical, class-based, dynamic, and online topic modeling. It even supports visualizations similar to LDAvis! Corresponding medium posts can be found here, here and here. For a more detailed overview, you can...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 11
    Synthetic Data Vault (SDV)

    Synthetic Data Vault (SDV)

    Synthetic Data Generation for tabular, relational and time series data

    The Synthetic Data Vault (SDV) is a Synthetic Data Generation ecosystem of libraries that allows users to easily learn single-table, multi-table and timeseries datasets to later on generate new Synthetic Data that has the same format and statistical properties as the original dataset. Synthetic data can then be used to supplement, augment and in some cases replace real data when training Machine Learning models. Additionally, it enables the testing of Machine Learning or other data dependent...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 12
    Albumentations

    Albumentations

    Fast image augmentation library and an easy-to-use wrapper

    Albumentations is a computer vision tool that boosts the performance of deep convolutional neural networks. Albumentations is a Python library for fast and flexible image augmentations. Albumentations efficiently implements a rich variety of image transform operations that are optimized for performance, and does so while providing a concise, yet powerful image augmentation interface for different computer vision tasks, including object classification, segmentation, and detection....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    LangChain

    LangChain

    ⚡ Building applications with LLMs through composability ⚡

    Large language models (LLMs) are emerging as a transformative technology, enabling developers to build applications that they previously could not. But using these LLMs in isolation is often not enough to create a truly powerful app - the real power comes when you can combine them with other sources of computation or knowledge. This library is aimed at assisting in the development of those types of applications.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 14
    Simple StyleGan2 for Pytorch

    Simple StyleGan2 for Pytorch

    Simplest working implementation of Stylegan2

    Simple Pytorch implementation of Stylegan2 that can be completely trained from the command-line, no coding needed. You will need a machine with a GPU and CUDA installed. You can also specify the location where intermediate results and model checkpoints should be stored. You can increase the network capacity (which defaults to 16) to improve generation results, at the cost of more memory. By default, if the training gets cut off, it will automatically resume from the last checkpointed file....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    marqo

    marqo

    Tensor search for humans

    A tensor-based search and analytics engine that seamlessly integrates with your applications, websites, and workflows. Marqo is a versatile and robust search and analytics engine that can be integrated into any website or application. Due to horizontal scalability, Marqo provides lightning-fast query times, even with millions of documents. Marqo helps you configure deep-learning models like CLIP to pull semantic meaning from images. It can seamlessly handle image-to-image, image-to-text and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    SDGym

    SDGym

    Benchmarking synthetic data generation methods

    The Synthetic Data Gym (SDGym) is a benchmarking framework for modeling and generating synthetic data. Measure performance and memory usage across different synthetic data modeling techniques – classical statistics, deep learning and more! The SDGym library integrates with the Synthetic Data Vault ecosystem. You can use any of its synthesizers, datasets or metrics for benchmarking. You also customize the process to include your own work. Select any of the publicly available datasets from the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    TextGen

    TextGen

    textgen, Text Generation models

    Implementation of Text Generation models. textgen implements a variety of text generation models, including UDA, GPT2, Seq2Seq, BART, T5, SongNet and other models, out of the box. UDA, non-core word replacement. EDA, simple data augmentation technique: similar words, synonym replacement, random word insertion, deletion, replacement. This project refers to Google's UDA (non-core word replacement) algorithm and EDA algorithm, based on TF-IDF to replace some unimportant words in sentences with...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Shap-E

    Shap-E

    Generate 3D objects conditioned on text or images

    The shap-e repository provides the official code and model release for Shap-E, a conditional generative model designed to produce 3D assets (implicit functions, meshes, neural radiance fields) from text or image prompts. The model is built with a two-stage architecture: first an encoder that maps existing 3D assets into parameterizations of implicit functions, and then a conditional diffusion model trained on those parameterizations to generate new assets. Because it works at the level of...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 19
    Aphantasia

    Aphantasia

    CLIP + FFT/DWT/RGB = text to image/video

    This is a collection of text-to-image tools, evolved from the artwork of the same name. Based on CLIP model and Lucent library, with FFT/DWT/RGB parameterizes (no-GAN generation). Illustrip (text-to-video with motion and depth) is added. DWT (wavelets) parameterization is added. Check also colabs below, with VQGAN and SIREN+FFM generators. Tested on Python 3.7 with PyTorch 1.7.1 or 1.8. Generating massive detailed textures, a la deepdream, fullHD/4K resolutions and above, various CLIP models...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    DALL-E 2 - Pytorch

    DALL-E 2 - Pytorch

    Implementation of DALL-E 2, OpenAI's updated text-to-image synthesis

    Implementation of DALL-E 2, OpenAI's updated text-to-image synthesis neural network, in Pytorch. The main novelty seems to be an extra layer of indirection with the prior network (whether it is an autoregressive transformer or a diffusion network), which predicts an image embedding based on the text embedding from CLIP. Specifically, this repository will only build out the diffusion prior network, as it is the best performing variant (but which incidentally involves a causal transformer as...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    KoboldCpp

    KoboldCpp

    Run GGUF models easily with a UI or API. One File. Zero Install.

    KoboldCpp is an easy-to-use AI text-generation software for GGML and GGUF models, inspired by the original KoboldAI. It's a single self-contained distributable that builds off llama.cpp and adds many additional powerful features.
    Downloads: 250 This Week
    Last Update:
    See Project
  • 22
    MusicLM - Pytorch

    MusicLM - Pytorch

    Implementation of MusicLM music generation model in Pytorch

    Implementation of MusicLM, Google's new SOTA model for music generation using attention networks, in Pytorch. They are basically using text-conditioned AudioLM, but surprisingly with the embeddings from a text-audio contrastive learned model named MuLan. MuLan is what will be built out in this repository, with AudioLM modified from the other repository to support the music generation needs here.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 23
    Langfuse

    Langfuse

    Open-source observability and analytics for LLM apps

    Langfuse is building open-source observability and analytics for LLM apps. Observability: Explore and debug complex logs & traces in a visual UI. Analytics: Improve performance of LLM apps. In particular, get a view on costs, latency and response quality using intuitive dashboards.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 24
    ChatFred

    ChatFred

    Alfred workflow using ChatGPT, DALL·E 2 and other models for chatting

    Alfred workflow using ChatGPT, DALL·E 2 and other models for chatting, image generation and more. Access ChatGPT, DALL·E 2, and other OpenAI models. Language models often give wrong information. Verify answers if they are important. Talk with ChatGPT via the cf keyword. Answers will show as Large Type. Alternatively, use the Universal Action, Fallback Search, or Hotkey. To generate text with InstructGPT models and see results in-line, use the cft keyword. ⤓ Install on the Alfred Gallery or...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 25
    Stable Diffusion in Docker

    Stable Diffusion in Docker

    Run the Stable Diffusion releases in a Docker container

    Run the Stable Diffusion releases in a Docker container with txt2img, img2img, depth2img, pix2pix, upscale4x, and inpaint. Run the Stable Diffusion releases on Huggingface in a GPU-accelerated Docker container. By default, the pipeline uses the full model and weights which requires a CUDA capable GPU with 8GB+ of VRAM. It should take a few seconds to create one image. On less powerful GPUs you may need to modify some of the options; see the Examples section for more details. If you lack a...
    Downloads: 1 This Week
    Last Update:
    See Project