• MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • Build Securely on AWS with Proven Frameworks Icon
    Build Securely on AWS with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 1
    Simple StyleGan2 for Pytorch

    Simple StyleGan2 for Pytorch

    Simplest working implementation of Stylegan2

    Simple Pytorch implementation of Stylegan2 that can be completely trained from the command-line, no coding needed. You will need a machine with a GPU and CUDA installed. You can also specify the location where intermediate results and model checkpoints should be stored. You can increase the network capacity (which defaults to 16) to improve generation results, at the cost of more memory. By default, if the training gets cut off, it will automatically resume from the last checkpointed file....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    StudioGAN

    StudioGAN

    StudioGAN is a Pytorch library providing implementations of networks

    StudioGAN is a Pytorch library providing implementations of representative Generative Adversarial Networks (GANs) for conditional/unconditional image generation. StudioGAN aims to offer an identical playground for modern GANs so that machine learning researchers can readily compare and analyze a new idea. Moreover, StudioGAN provides an unprecedented-scale benchmark for generative models. The benchmark includes results from GANs (BigGAN-Deep, StyleGAN-XL), auto-regressive models (MaskGIT,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    HyperGAN

    HyperGAN

    Composable GAN framework with api and user interface

    A composable GAN built for developers, researchers, and artists. HyperGAN builds generative adversarial networks in PyTorch and makes them easy to train and share. HyperGAN is currently in pre-release and open beta. Everyone will have different goals when using hypergan. HyperGAN is currently beta. We are still searching for a default cross-data-set configuration. Each of the examples supports search. Automated search can help find good configurations. If you are unsure, you can start with...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next