Showing 18 open source projects for "python data analysis"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Deliver secure remote access with OpenVPN. Icon
    Deliver secure remote access with OpenVPN.

    Trusted by nearly 20,000 customers worldwide, and all major cloud providers.

    OpenVPN's products provide scalable, secure remote access — giving complete freedom to your employees to work outside the office while securely accessing SaaS, the internet, and company resources.
    Get started — no credit card required.
  • 1
    Synthetic Data Vault (SDV)

    Synthetic Data Vault (SDV)

    Synthetic Data Generation for tabular, relational and time series data

    The Synthetic Data Vault (SDV) is a Synthetic Data Generation ecosystem of libraries that allows users to easily learn single-table, multi-table and timeseries datasets to later on generate new Synthetic Data that has the same format and statistical properties as the original dataset. Synthetic data can then be used to supplement, augment and in some cases replace real data when training Machine Learning models. Additionally, it enables the testing of Machine Learning or other data dependent...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    Albumentations

    Albumentations

    Fast image augmentation library and an easy-to-use wrapper

    Albumentations is a computer vision tool that boosts the performance of deep convolutional neural networks. Albumentations is a Python library for fast and flexible image augmentations. Albumentations efficiently implements a rich variety of image transform operations that are optimized for performance, and does so while providing a concise, yet powerful image augmentation interface for different computer vision tasks, including object classification, segmentation, and detection. Albumentations...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 3
    YData Synthetic

    YData Synthetic

    Synthetic data generators for tabular and time-series data

    .... It consists a set of different GANs architectures developed using Tensorflow 2.0. Several example Jupyter Notebooks and Python scripts are included, to show how to use the different architectures. YData synthetic has now a UI interface to guide you through the steps and inputs to generate structure tabular data. The streamlit app is available form v1.0.0 onwards.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 4
    CTGAN

    CTGAN

    Conditional GAN for generating synthetic tabular data

    CTGAN is a collection of Deep Learning based synthetic data generators for single table data, which are able to learn from real data and generate synthetic data with high fidelity. If you're just getting started with synthetic data, we recommend installing the SDV library which provides user-friendly APIs for accessing CTGAN. The SDV library provides wrappers for preprocessing your data as well as additional usability features like constraints. When using the CTGAN library directly, you may...
    Downloads: 1 This Week
    Last Update:
    See Project
  • Sales CRM and Pipeline Management Software | Pipedrive Icon
    Sales CRM and Pipeline Management Software | Pipedrive

    The easy and effective CRM for closing deals

    Pipedrive’s simple interface empowers salespeople to streamline workflows and unite sales tasks in one workspace. Unlock instant sales insights with Pipedrive’s visual sales pipeline and fine-tune your strategy with robust reporting features and a personalized AI Sales Assistant.
    Try it for free
  • 5
    Simple StyleGan2 for Pytorch

    Simple StyleGan2 for Pytorch

    Simplest working implementation of Stylegan2

    Simple Pytorch implementation of Stylegan2 that can be completely trained from the command-line, no coding needed. You will need a machine with a GPU and CUDA installed. You can also specify the location where intermediate results and model checkpoints should be stored. You can increase the network capacity (which defaults to 16) to improve generation results, at the cost of more memory. By default, if the training gets cut off, it will automatically resume from the last checkpointed file....
    Downloads: 1 This Week
    Last Update:
    See Project
  • 6
    SDGym

    SDGym

    Benchmarking synthetic data generation methods

    The Synthetic Data Gym (SDGym) is a benchmarking framework for modeling and generating synthetic data. Measure performance and memory usage across different synthetic data modeling techniques – classical statistics, deep learning and more! The SDGym library integrates with the Synthetic Data Vault ecosystem. You can use any of its synthesizers, datasets or metrics for benchmarking. You also customize the process to include your own work. Select any of the publicly available datasets from...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Orion

    Orion

    A machine learning library for detecting anomalies in signals

    Orion is a machine-learning library built for unsupervised time series anomaly detection. Such signals are generated by a wide variety of systems, few examples include telemetry data generated by satellites, signals from wind turbines, and even stock market price tickers. We built this to provide one place where users can find the latest and greatest in machine learning and deep learning world including our own innovations. Abstract away from the users the nitty-gritty about preprocessing...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Lightweight' GAN

    Lightweight' GAN

    Implementation of 'lightweight' GAN, proposed in ICLR 2021

    Implementation of 'lightweight' GAN proposed in ICLR 2021, in Pytorch. The main contribution of the paper is a skip-layer excitation in the generator, paired with autoencoding self-supervised learning in the discriminator. Quoting the one-line summary "converge on single gpu with few hours' training, on 1024 resolution sub-hundred images". Augmentation is essential for Lightweight GAN to work effectively in a low data setting. You can test and see how your images will be augmented before...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Old Photo Restoration

    Old Photo Restoration

    Bringing Old Photo Back to Life (CVPR 2020 oral)

    ... variational autoencoders (VAEs) to respectively transform old photos and clean photos into two latent spaces. And the translation between these two latent spaces is learned with synthetic paired data. This translation generalizes well to real photos because the domain gap is closed in the compact latent space. Besides, to address multiple degradations mixed in one old photo, we design a global branch with a partial nonlocal block targeting to the structured defects, such as scratches and dust spots.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • 10
    Hands-on Unsupervised Learning

    Hands-on Unsupervised Learning

    Code for Hands-on Unsupervised Learning Using Python (O'Reilly Media)

    This repo contains the code for the O'Reilly Media, Inc. book "Hands-on Unsupervised Learning Using Python: How to Build Applied Machine Learning Solutions from Unlabeled Data" by Ankur A. Patel. Many industry experts consider unsupervised learning the next frontier in artificial intelligence, one that may hold the key to the holy grail in AI research, the so-called general artificial intelligence. Since the majority of the world's data is unlabeled, conventional supervised learning cannot...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Awesome AI-ML-DL

    Awesome AI-ML-DL

    Awesome Artificial Intelligence, Machine Learning and Deep Learning

    Awesome Artificial Intelligence, Machine Learning and Deep Learning as we learn it. Study notes and a curated list of awesome resources of such topics. This repo is dedicated to engineers, developers, data scientists and all other professions that take interest in AI, ML, DL and related sciences. To make learning interesting and to create a place to easily find all the necessary material. Please contribute, watch, star, fork and share the repo with others in your community.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    HyperGAN

    HyperGAN

    Composable GAN framework with api and user interface

    A composable GAN built for developers, researchers, and artists. HyperGAN builds generative adversarial networks in PyTorch and makes them easy to train and share. HyperGAN is currently in pre-release and open beta. Everyone will have different goals when using hypergan. HyperGAN is currently beta. We are still searching for a default cross-data-set configuration. Each of the examples supports search. Automated search can help find good configurations. If you are unsure, you can start...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    NiftyNet

    NiftyNet

    An open-source convolutional neural networks platform for research

    ... data. Quickly build new solutions to your own image analysis problems. NiftyNet currently supports medical image segmentation and generative adversarial networks. NiftyNet is not intended for clinical use.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    DCGAN in TensorLayerX

    DCGAN in TensorLayerX

    The Simplest DCGAN Implementation

    This is an implementation of Deep Convolutional Generative Adversarial Networks. First, download the aligned face images from google or baidu to a data folder. Please place dataset 'img_align_celeba.zip' under 'data/celebA/' by default.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 15
    TGAN

    TGAN

    Generative adversarial training for generating synthetic tabular data

    We are happy to announce that our new model for synthetic data called CTGAN is open-sourced. The new model is simpler and gives better performance on many datasets. TGAN is a tabular data synthesizer. It can generate fully synthetic data from real data. Currently, TGAN can generate numerical columns and categorical columns. TGAN has been developed and runs on Python 3.5, 3.6 and 3.7. Also, although it is not strictly required, the usage of a virtualenv is highly recommended in order to avoid...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Exposure

    Exposure

    Learning infinite-resolution image processing with GAN and RL

    ... to suboptimal results such as posterization. Moreover, jpg and most pngs assume an sRGB color space, which contains a roughly 1/2.2 Gamma correction, making the data distribution different from training images (which are linear). Exposure is just a prototype (proof-of-concept) of our latest research, and there are definitely a lot of engineering efforts required to make it suitable for a real product.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Edward

    Edward

    A probabilistic programming language in TensorFlow

    A library for probabilistic modeling, inference, and criticism. Edward is a Python library for probabilistic modeling, inference, and criticism. It is a testbed for fast experimentation and research with probabilistic models, ranging from classical hierarchical models on small data sets to complex deep probabilistic models on large data sets. Edward fuses three fields, Bayesian statistics and machine learning, deep learning, and probabilistic programming. Edward is built on TensorFlow...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Seq2seq Chatbot for Keras

    Seq2seq Chatbot for Keras

    This repository contains a new generative model of chatbot

    This repository contains a new generative model of chatbot based on seq2seq modeling. The trained model available here used a small dataset composed of ~8K pairs of context (the last two utterances of the dialogue up to the current point) and respective response. The data were collected from dialogues of English courses online. This trained model can be fine-tuned using a closed-domain dataset to real-world applications. The canonical seq2seq model became popular in neural machine translation...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.