Showing 8 open source projects for "nvidia"

View related business solutions
  • AI-generated apps that pass security review Icon
    AI-generated apps that pass security review

    Stop waiting on engineering. Build production-ready internal tools with AI—on your company data, in your cloud.

    Retool lets you generate dashboards, admin panels, and workflows directly on your data. Type something like “Build me a revenue dashboard on my Stripe data” and get a working app with security, permissions, and compliance built in from day one. Whether on our cloud or self-hosted, create the internal software your team needs without compromising enterprise standards or control.
    Try Retool free
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 1
    waifu2x ncnn Vulkan

    waifu2x ncnn Vulkan

    waifu2x converter ncnn version, run fast GPU with vulkan

    ncnn implementation of waifu2x converter. Runs fast on Intel/AMD/Nvidia/Apple-Silicon with Vulkan API. waifu2x-ncnn-vulkan uses ncnn project as the universal neural network inference framework.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 2
    Tiny CUDA Neural Networks

    Tiny CUDA Neural Networks

    Lightning fast C++/CUDA neural network framework

    This is a small, self-contained framework for training and querying neural networks. Most notably, it contains a lightning-fast "fully fused" multi-layer perceptron (technical paper), a versatile multiresolution hash encoding (technical paper), as well as support for various other input encodings, losses, and optimizers. We provide a sample application where an image function (x,y) -> (R,G,B) is learned. The fully fused MLP component of this framework requires a very large amount of shared...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Knet

    Knet

    Koç University deep learning framework

    Knet.jl is a deep learning package implemented in Julia, so you should be able to run it on any machine that can run Julia. It has been extensively tested on Linux machines with NVIDIA GPUs and CUDA libraries, and it has been reported to work on OSX and Windows. If you would like to try it on your own computer, please follow the instructions on Installation. If you would like to try working with a GPU and do not have access to one, take a look at Using Amazon AWS or Using Microsoft Azure. If you find a bug, please open a GitHub issue. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    PyText

    PyText

    A natural language modeling framework based on PyTorch

    ...We use PyText at Facebook to iterate quickly on new modeling ideas and then seamlessly ship them at scale. Distributed-training support built on the new C10d backend in PyTorch 1.0. Mixed precision training support through APEX (trains faster with less GPU memory on NVIDIA Tensor Cores). Extensible components that allows easy creation of new models and tasks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Find Hidden Risks in Windows Task Scheduler Icon
    Find Hidden Risks in Windows Task Scheduler

    Free diagnostic script reveals configuration issues, error patterns, and security risks. Instant HTML report.

    Windows Task Scheduler might be hiding critical failures. Download the free JAMS diagnostic tool to uncover problems before they impact production—get a color-coded risk report with clear remediation steps in minutes.
    Download Free Tool
  • 5
    Ethereum Mining NVIDIA Graph Card Ubuntu

    Ethereum Mining NVIDIA Graph Card Ubuntu

    USB flash drive ISO image for Ethereum, Zcash and Monero mining

    USB flash drive ISO image for Ethereum mining with NVIDIA graphics cards and Ubuntu GNU/Linux (64-bit Intel/AMD (x86_64)). Other cryptocurrencies, such as Monero or Zcash, can also be mined. With this ISO image, you can immediately mine Ethereum (ETH). Do not spend long time searching and researching. If you do not trust me and do not want to use the image, you will find all configuration files and scripts in the files folder.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 6
    Mocha.jl

    Mocha.jl

    Deep Learning framework for Julia

    Mocha.jl is a deep learning framework for Julia, inspired by the C++ Caffe framework. It offers efficient implementations of gradient descent solvers and common neural network layers, supports optional unsupervised pre-training, and allows switching to a GPU backend for accelerated performance. The development of Mocha.jl happens in relative early days of Julia. Now that both Julia and the ecosystem has evolved significantly, and with some exciting new tech such as writing GPU kernels...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Caffe Framework

    Caffe Framework

    Caffe, a fast open framework for deep learning

    Caffe is a deep learning framework made with expression, speed, and modularity in mind. It is developed by Berkeley AI Research (BAIR) and by community contributors. Yangqing Jia created the project during his PhD at UC Berkeley. Caffe is released under the BSD 2-Clause license. Expressive architecture encourages application and innovation. Models and optimization are defined by configuration without hard-coding. Switch between CPU and GPU by setting a single flag to train on a GPU machine...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Caffe

    Caffe

    A fast open framework for deep learning

    ...It’s got an expressive architecture that encourages application and innovation, and extensible code that’s great for active development. Caffe also offers great speed, capable of processing over 60M images per day with a single NVIDIA K40 GPU. It’s arguably one of the fastest convnet implementations around. Caffe is developed by the Berkeley AI Research (BAIR)/The Berkeley Vision and Learning Center (BVLC) and a great community of contributors that continue to make Caffe state-of-the-art in both code and models. It’s been used in numerous projects, from startup prototypes and academic research projects, to large scale industrial applications.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next