Showing 37 open source projects for "gpu"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Optimize every aspect of hiring with Greenhouse Recruiting Icon
    Optimize every aspect of hiring with Greenhouse Recruiting

    Hire for what's next.

    What’s next for many of us is changing. Your company’s ability to hire great talent is as important as ever – so you’ll be ready for whatever’s ahead. Whether you need to scale your team quickly or improve your hiring process, Greenhouse gives you the right technology, know-how and support to take on what’s next.
    Learn More
  • 1
    Starling Framework

    Starling Framework

    2D GPU-accelerated framework for ActionScript developers

    Starling is an open-source 2D framework for ActionScript developers that leverages GPU acceleration via Adobe's Stage3D API to create smooth, high-performance games and applications across desktop and mobile platforms. It mimics the traditional Flash display list while dramatically improving performance, making it a popular choice for Flash developers transitioning into more efficient, hardware-accelerated environments.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    waifu2x ncnn Vulkan

    waifu2x ncnn Vulkan

    waifu2x converter ncnn version, run fast GPU with vulkan

    ncnn implementation of waifu2x converter. Runs fast on Intel/AMD/Nvidia/Apple-Silicon with Vulkan API. waifu2x-ncnn-vulkan uses ncnn project as the universal neural network inference framework.
    Downloads: 8 This Week
    Last Update:
    See Project
  • 3
    TorchQuantum

    TorchQuantum

    A PyTorch-based framework for Quantum Classical Simulation

    ...Researchers on quantum algorithm design, parameterized quantum circuit training, quantum optimal control, quantum machine learning, and quantum neural networks. Dynamic computation graph, automatic gradient computation, fast GPU support, batch model terrorized processing.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 4
    Meridian

    Meridian

    Meridian is an MMM framework

    ...The framework provides a robust foundation for constructing in-house MMM pipelines capable of handling both national and geo-level data, with built-in support for calibration using experimental data or prior knowledge. Meridian uses the No-U-Turn Sampler (NUTS) for Markov Chain Monte Carlo (MCMC) sampling to produce statistically rigorous results, and it includes GPU acceleration to significantly reduce computation time.
    Downloads: 3 This Week
    Last Update:
    See Project
  • From donor engagement to donor retention, DonorPerfect is the complete solution for the tools you need to succeed. Icon
    From donor engagement to donor retention, DonorPerfect is the complete solution for the tools you need to succeed.

    For nonprofits serving their local community to large, international organizations like UNICEF.

    Boost your nonprofit's fundraising initiatives and build valuable donor relationships with DonorPerfect fundraising growth platform. Trusted by more than 50,000 fundraisers, DonorPerfect is packed with powerful features to help nonprofit organizations, regardless of size and mission, effectively manage donor data and raise money for their cause.
    Learn More
  • 5
    mpv.net

    mpv.net

    mpv.net is a modern media player for Windows that works just like mpv

    mpv.net is a modern desktop media player for Windows based on the popular mpv player. mpv.net is designed to be mpv compatible, almost all mpv features are available because they are all contained in libmpv, this means the official mpv manual applies to mpv.net. mpv focuses on the usage of the command line and the terminal, mpv.net retains the ability to be used from the command line and the terminal and adds a modern Windows GUI on top of it. Video output that is capable of many features...
    Downloads: 123 This Week
    Last Update:
    See Project
  • 6
    InvertibleNetworks.jl

    InvertibleNetworks.jl

    A Julia framework for invertible neural networks

    Building blocks for invertible neural networks in the Julia programming language.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 7
    Nuclio

    Nuclio

    High-Performance Serverless event and data processing platform

    Nuclio is an open source and managed serverless platform used to minimize development and maintenance overhead and automate the deployment of data-science-based applications. Real-time performance running up to 400,000 function invocations per second. Portable across low laptops, edge, on-prem and multi-cloud deployments. The first serverless platform supporting GPUs for optimized utilization and sharing. Automated deployment to production in a few clicks from Jupyter notebook. Deploy one of...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 8
    BentoML

    BentoML

    Unified Model Serving Framework

    ...Adaptive batching dynamically groups inference requests for optimal performance. Orchestrate distributed inference graph with multiple models via Yatai on Kubernetes. Easily configure CUDA dependencies for running inference with GPU. Automatically generate docker images for production deployment.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 9
    tvm

    tvm

    Open deep learning compiler stack for cpu, gpu, etc.

    Apache TVM is an open source machine learning compiler framework for CPUs, GPUs, and machine learning accelerators. It aims to enable machine learning engineers to optimize and run computations efficiently on any hardware backend. The vision of the Apache TVM Project is to host a diverse community of experts and practitioners in machine learning, compilers, and systems architecture to build an accessible, extensible, and automated open-source framework that optimizes current and emerging...
    Downloads: 1 This Week
    Last Update:
    See Project
  • Kognition Smart Building Software Icon
    Kognition Smart Building Software

    For organizations searching for enterprise safety and security monitoring AI for smart buildings

    Its multi-patented enterprise software utilizes artificial intelligence to integrate and orchestrate new and existing security cameras, access control systems and IoT sensors into a dynamic, real-time alerting and analytics platform for smart buildings. Kognition’s easy-to-use user interface transforms surveillance video and IoT data into actionable intelligence to prevent hacking, espionage, theft, the spread of diseases, active shooters, and other high impact dangers. A growing list of Fortune 500 customers rely on Kognition’s products & services everyday to enhance and automate security and safety in their buildings.
    Learn More
  • 10
    Tiny CUDA Neural Networks

    Tiny CUDA Neural Networks

    Lightning fast C++/CUDA neural network framework

    This is a small, self-contained framework for training and querying neural networks. Most notably, it contains a lightning-fast "fully fused" multi-layer perceptron (technical paper), a versatile multiresolution hash encoding (technical paper), as well as support for various other input encodings, losses, and optimizers. We provide a sample application where an image function (x,y) -> (R,G,B) is learned. The fully fused MLP component of this framework requires a very large amount of shared...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 11
    MegEngine

    MegEngine

    Easy-to-use deep learning framework with 3 key features

    ...After training, just put everything into your model and inference it on any platform at ease. Speed and precision problems won't bother you anymore due to the same core inside. In training, GPU memory usage could go down to one-third at the cost of only one additional line, which enables the DTR algorithm. Gain the lowest memory usage when inferencing a model by leveraging our unique pushdown memory planner. NOTE: MegEngine now supports Python installation on Linux-64bit/Windows-64bit/MacOS(CPU-Only)-10.14+/Android 7+(CPU-Only) platforms with Python from 3.5 to 3.8. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 12
    TensorFlow Model Garden

    TensorFlow Model Garden

    Models and examples built with TensorFlow

    ...A flexible and lightweight library that users can easily use or fork when writing customized training loop code in TensorFlow 2.x. It seamlessly integrates with tf.distribute and supports running on different device types (CPU, GPU, and TPU).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Deep Java Library (DJL)

    Deep Java Library (DJL)

    An engine-agnostic deep learning framework in Java

    ...Because DJL is deep learning engine agnostic, you don't have to make a choice between engines when creating your projects. You can switch engines at any point. To ensure the best performance, DJL also provides automatic CPU/GPU choice based on hardware configuration.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 14
    Ray

    Ray

    A unified framework for scalable computing

    Modern workloads like deep learning and hyperparameter tuning are compute-intensive and require distributed or parallel execution. Ray makes it effortless to parallelize single machine code — go from a single CPU to multi-core, multi-GPU or multi-node with minimal code changes. Accelerate your PyTorch and Tensorflow workload with a more resource-efficient and flexible distributed execution framework powered by Ray. Accelerate your hyperparameter search workloads with Ray Tune. Find the best model and reduce training costs by using the latest optimization algorithms. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    QtAV

    QtAV

    A multimedia framework based on Qt and FFmpeg

    QtAV is a cross-platform and high performance multimedia playback framework based on Qt and FFmpeg. Features: timeline preview, gpu decoding etc
    Leader badge
    Downloads: 54 This Week
    Last Update:
    See Project
  • 16
    pipeless

    pipeless

    A computer vision framework to create and deploy apps in minutes

    ...You can easily use industry-standard models, such as YOLO, or load your custom model in one of the supported inference runtimes. Pipeless ships some of the most popular inference runtimes, such as the ONNX Runtime, allowing you to run inference with high performance on CPU or GPU out-of-the-box. You can deploy your Pipeless application with a single command to edge and IoT devices or the cloud.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Knet

    Knet

    Koç University deep learning framework

    ...Here are step-by-step instructions for launching a GPU instance with a Knet image (the screens may have changed slightly since this writing).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    MetalPetal

    MetalPetal

    A GPU accelerated image and video processing framework built on Metal

    MetalPetal is an image processing framework based on Metal designed to provide real-time processing for still images and video with easy-to-use programming interfaces. This chapter covers the key concepts of MetalPetal, and will help you to get a better understanding of its design, implementation, performance implications, and best practices. A MTIImage object is a representation of an image to be processed or produced. It does directly represent image bitmap data instead it has all the...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 19
    Darknet

    Darknet

    Convolutional Neural Networks

    ...Darknet is lightweight, fast, and easy to compile, making it suitable for research and production use. The repository provides pre-trained models, configuration files, and tools for training custom object detection models. With GPU acceleration via CUDA and OpenCV integration, it achieves high performance in image recognition tasks. Its simplicity, combined with powerful capabilities, has made Darknet one of the most influential projects in the computer vision community.
    Downloads: 16 This Week
    Last Update:
    See Project
  • 20
    MACE

    MACE

    Deep learning inference framework optimized for mobile platforms

    ...Runtime is optimized with NEON, OpenCL and Hexagon, and Winograd algorithm is introduced to speed up convolution operations. The initialization is also optimized to be faster. Chip-dependent power options like big.LITTLE scheduling, Adreno GPU hints are included as advanced APIs. UI responsiveness guarantee is sometimes obligatory when running a model. Mechanism like automatically breaking OpenCL kernel into small units is introduced to allow better preemption for the UI rendering task. Graph level memory allocation optimization and buffer reuse are supported. The core library tries to keep minimum external dependencies to keep the library footprint small.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    PyText

    PyText

    A natural language modeling framework based on PyTorch

    ...We use PyText at Facebook to iterate quickly on new modeling ideas and then seamlessly ship them at scale. Distributed-training support built on the new C10d backend in PyTorch 1.0. Mixed precision training support through APEX (trains faster with less GPU memory on NVIDIA Tensor Cores). Extensible components that allows easy creation of new models and tasks.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 22
    Dopamine

    Dopamine

    Framework for prototyping of reinforcement learning algorithms

    ...It aims to fill the need for a small, easily grokked codebase in which users can freely experiment with wild ideas (speculative research). This first version focuses on supporting the state-of-the-art, single-GPU Rainbow agent (Hessel et al., 2018) applied to Atari 2600 game-playing (Bellemare et al., 2013). Specifically, our Rainbow agent implements the three components identified as most important by Hessel et al., n-step Bellman updates, prioritized experience replay, and distributional reinforcement learning. For completeness, we also provide an implementation of DQN (Mnih et al., 2015). ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    GPU,  a Global Processing Unit

    GPU, a Global Processing Unit

    A framework for distributed computing

    An extensible framework for distributed computing on P2P grids. We support peaceful free and open research and build an internet supercomputer. We render movies, solve Eternity puzzles, predict climate and improve a ~30 GHz cluster of clients.
    Downloads: 8 This Week
    Last Update:
    See Project
  • 24
    Mocha.jl

    Mocha.jl

    Deep Learning framework for Julia

    ...It offers efficient implementations of gradient descent solvers and common neural network layers, supports optional unsupervised pre-training, and allows switching to a GPU backend for accelerated performance. The development of Mocha.jl happens in relative early days of Julia. Now that both Julia and the ecosystem has evolved significantly, and with some exciting new tech such as writing GPU kernels directly in Julia and general auto-differentiation supports, the Mocha codebase becomes excessively old and primitive. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Caffe Framework

    Caffe Framework

    Caffe, a fast open framework for deep learning

    ...Caffe is released under the BSD 2-Clause license. Expressive architecture encourages application and innovation. Models and optimization are defined by configuration without hard-coding. Switch between CPU and GPU by setting a single flag to train on a GPU machine then deploy to commodity clusters or mobile devices. Extensible code fosters active development. In Caffe’s first year, it has been forked by over 1,000 developers and had many significant changes contributed back. Thanks to these contributors the framework tracks the state-of-the-art in both code and models.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • Next