Showing 73 open source projects for "machine learning"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Reach Your Audience with Rise Vision, the #1 Cloud Digital Signage Software Solution Icon
    Reach Your Audience with Rise Vision, the #1 Cloud Digital Signage Software Solution

    K-12 Schools, Higher Education, Businesses, Restaurants

    Rise Vision is the #1 digital signage company, offering easy-to-use cloud digital signage software compatible with any player across multiple screens. Forget about static displays. Save time and boost sales with 500+ customizable content templates for your screens. If you ever need help, get free training and exceptionally fast support.
    Learn More
  • 1
    ML.NET

    ML.NET

    Open source and cross-platform machine learning framework for .NET

    With ML.NET, you can create custom ML models using C# or F# without having to leave the .NET ecosystem. ML.NET lets you re-use all the knowledge, skills, code, and libraries you already have as a .NET developer so that you can easily integrate machine learning into your web, mobile, desktop, games, and IoT apps. ML.NET offers Model Builder (a simple UI tool) and ML.NET CLI to make it super easy to build custom ML Models. These tools use Automated ML (AutoML), a cutting edge technology that automates the process of building best performing models for your Machine Learning scenario. ...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 2
    tvm

    tvm

    Open deep learning compiler stack for cpu, gpu, etc.

    Apache TVM is an open source machine learning compiler framework for CPUs, GPUs, and machine learning accelerators. It aims to enable machine learning engineers to optimize and run computations efficiently on any hardware backend. The vision of the Apache TVM Project is to host a diverse community of experts and practitioners in machine learning, compilers, and systems architecture to build an accessible, extensible, and automated open-source framework that optimizes current and emerging machine learning models for any hardware platform. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 3
    Flower

    Flower

    Flower: A Friendly Federated Learning Framework

    ...Many components can be extended and overridden to build new state-of-the-art systems. Different machine learning frameworks have different strengths. Flower can be used with any machine learning framework, for example, PyTorch, TensorFlow, Hugging Face Transformers, PyTorch Lightning, scikit-learn, JAX, TFLite, MONAI, fastai, MLX, XGBoost, Pandas for federated analytics, or even raw NumPy for users who enjoy computing gradients by hand.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 4
    Seldon Core

    Seldon Core

    An MLOps framework to package, deploy, monitor and manage models

    ...Framework agnostic, supports top ML libraries, toolkits and languages. Advanced deployments with experiments, ensembles and transformers. Our open-source framework makes it easier and faster to deploy your machine learning models and experiments at scale on Kubernetes. The Kubeflow project is dedicated to making deployments of machine learning (ML) workflows on Kubernetes.
    Downloads: 1 This Week
    Last Update:
    See Project
  • AI-First Supply Chain Management Icon
    AI-First Supply Chain Management

    Supply chain managers, executives, and businesses seeking AI-powered solutions to optimize planning, operations, and decision-making across the supply

    Logility is a market-leading provider of AI-first supply chain management solutions engineered to help organizations build sustainable digital supply chains that improve people’s lives and the world we live in. The company’s approach is designed to reimagine supply chain planning by shifting away from traditional “what happened” processes to an AI-driven strategy that combines the power of humans and machines to predict and be ready for what’s coming. Logility’s fully integrated, end-to-end platform helps clients know faster, turn uncertainty into opportunity, and transform the supply chain from a cost center to an engine for growth.
    Learn More
  • 5
    MLJ

    MLJ

    A Julia machine learning framework

    MLJ (Machine Learning in Julia) is a toolbox written in Julia providing a common interface and meta-algorithms for selecting, tuning, evaluating, composing and comparing about 200 machine learning models written in Julia and other languages. The functionality of MLJ is distributed over several repositories illustrated in the dependency chart below.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 6
    Ray

    Ray

    A unified framework for scalable computing

    Modern workloads like deep learning and hyperparameter tuning are compute-intensive and require distributed or parallel execution. Ray makes it effortless to parallelize single machine code — go from a single CPU to multi-core, multi-GPU or multi-node with minimal code changes. Accelerate your PyTorch and Tensorflow workload with a more resource-efficient and flexible distributed execution framework powered by Ray.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Rasa

    Rasa

    Open source machine learning framework to automate text conversations

    Rasa is an open source machine learning framework to automate text-and voice-based conversations. With Rasa, you can build contextual assistants on Facebook Messenger, Slack, Google Hangouts, Webex Teams, Microsoft Bot Framework, Rocket.Chat, Mattermost, Telegram, and Twilio or on your own custom conversational channels. Rasa helps you build contextual assistants capable of having layered conversations with lots of back-and-forths.
    Downloads: 8 This Week
    Last Update:
    See Project
  • 8
    Django friendly finite state machine

    Django friendly finite state machine

    Django friendly finite state machine support

    Django-fsm adds simple declarative state management for Django models. If you need parallel task execution, view, and background task code reuse over different flows - check my new project Django-view flow. Instead of adding a state field to a Django model and managing its values by hand, you use FSMField and mark model methods with the transition decorator. These methods could contain side effects of the state change. You may also take a look at the Django-fsm-admin project containing a...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 9
    Jittor

    Jittor

    Jittor is a high-performance deep learning framework

    Jittor is a high-performance deep learning framework based on JIT compiling and meta-operators. The whole framework and meta-operators are compiled just in time. A powerful op compiler and tuner are integrated into Jittor. It allowed us to generate high-performance code specialized for your model. Jittor also contains a wealth of high-performance model libraries, including image recognition, detection, segmentation, generation, differentiable rendering, geometric learning, reinforcement...
    Downloads: 1 This Week
    Last Update:
    See Project
  • Skillfully - The future of skills based hiring Icon
    Skillfully - The future of skills based hiring

    Realistic Workplace Simulations that Show Applicant Skills in Action

    Skillfully transforms hiring through AI-powered skill simulations that show you how candidates actually perform before you hire them. Our platform helps companies cut through AI-generated resumes and rehearsed interviews by validating real capabilities in action. Through dynamic job specific simulations and skill-based assessments, companies like Bloomberg and McKinsey have cut screening time by 50% while dramatically improving hire quality.
    Learn More
  • 10
    OneFlow

    OneFlow

    OneFlow is a deep learning framework designed to be user-friendly

    ...It adheres to the core concept and architecture of static compilation and streaming parallelism and solves the memory wall challenge at the cluster level. world-leading level. Provides a variety of services from primary AI talent training to enterprise-level machine learning lifecycle integrated management (MLOps), including AI training and AI development, and supports three deployment modes of public cloud, private cloud and hybrid cloud.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    MLJBase.jl

    MLJBase.jl

    Core functionality for the MLJ machine learning framework

    Repository for developers that provides core functionality for the MLJ machine learning framework. MLJ is a Julia framework for combining and tuning machine learning models. This repository provides core functionality for MLJ.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Kedro

    Kedro

    A Python framework for creating reproducible, maintainable code

    ...Makes a seamless transition from development to production, as you can write quick, throw-away exploratory code and transition to maintainable, easy-to-share, code experiments quickly. Puts the "engineering" back into data science because it borrows concepts from software engineering and applies them to machine-learning code. It is the foundation for clean, data science code.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 13
    TensorFlow Model Garden

    TensorFlow Model Garden

    Models and examples built with TensorFlow

    The TensorFlow Model Garden is a repository with a number of different implementations of state-of-the-art (SOTA) models and modeling solutions for TensorFlow users. We aim to demonstrate the best practices for modeling so that TensorFlow users can take full advantage of TensorFlow for their research and product development. To improve the transparency and reproducibility of our models, training logs on TensorBoard.dev are also provided for models to the extent possible though not all models...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 14
    MegEngine

    MegEngine

    Easy-to-use deep learning framework with 3 key features

    MegEngine is a fast, scalable and easy-to-use deep learning framework with 3 key features. You can represent quantization/dynamic shape/image pre-processing and even derivation in one model. After training, just put everything into your model and inference it on any platform at ease. Speed and precision problems won't bother you anymore due to the same core inside. In training, GPU memory usage could go down to one-third at the cost of only one additional line, which enables the DTR...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 15
    Fuzzy machine learning framework

    Fuzzy machine learning framework

    A library and a GUI front-end for fuzzy machine learning

    Fuzzy machine learning framework is a library and a GUI front-end for machine learning using intuitionistic fuzzy data. The approach is based on the intuitionistic fuzzy sets and the possibility theory. Further characteristics are fuzzy features and classes; numeric, enumeration features and features based on linguistic variables; user-defined features; derived and evaluated features; classifiers as features for building hierarchical systems; automatic refinement in case of dependent features; incremental learning; fuzzy control language support; object-oriented software design with extensible objects and automatic garbage collection; generic data base support through ODBC or SQLite; text I/O and HTML output; an advanced graphical user interface based on GTK+; and examples of use.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    IVY

    IVY

    The Unified Machine Learning Framework

    Take any code that you'd like to include. For example, an existing TensorFlow model, and some useful functions from both PyTorch and NumPy libraries. Choose any framework for writing your higher-level pipeline, including data loading, distributed training, analytics, logging, visualization etc. Choose any backend framework which should be used under the hood, for running this entire pipeline. Choose the most appropriate device or combination of devices for your needs. DeepMind releases an...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Apache Spark

    Apache Spark

    A unified analytics engine for large-scale data processing

    Apache Spark is a unified engine for large-scale data processing, offering APIs for batch jobs, streaming, machine learning, and graph computation. It builds on resilient distributed datasets (RDDs) and the newer DataFrame/Dataset abstractions to provide fault-tolerant, in-memory computation across clusters. Spark’s execution engine handles scheduling, shuffles, caching, and data locality so users can focus on transformations rather than infrastructure plumbing.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 18
    BentoML

    BentoML

    Unified Model Serving Framework

    BentoML simplifies ML model deployment and serves your models at a production scale. Support multiple ML frameworks natively: Tensorflow, PyTorch, XGBoost, Scikit-Learn and many more! Define custom serving pipeline with pre-processing, post-processing and ensemble models. Standard .bento format for packaging code, models and dependencies for easy versioning and deployment. Integrate with any training pipeline or ML experimentation platform. Parallelize compute-intense model inference...
    Downloads: 8 This Week
    Last Update:
    See Project
  • 19
    TorchQuantum

    TorchQuantum

    A PyTorch-based framework for Quantum Classical Simulation

    A PyTorch-based framework for Quantum Classical Simulation, Quantum Machine Learning, Quantum Neural Networks, Parameterized Quantum Circuits with support for easy deployments on real quantum computers. Researchers on quantum algorithm design, parameterized quantum circuit training, quantum optimal control, quantum machine learning, and quantum neural networks. Dynamic computation graph, automatic gradient computation, fast GPU support, batch model terrorized processing.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 20
    .NET for Apache Spark

    .NET for Apache Spark

    A free, open-source, and cross-platform big data analytics framework

    .NET for Apache Spark provides high-performance APIs for using Apache Spark from C# and F#. With these .NET APIs, you can access the most popular Dataframe and SparkSQL aspects of Apache Spark, for working with structured data, and Spark Structured Streaming, for working with streaming data. .NET for Apache Spark is compliant with .NET Standard - a formal specification of .NET APIs that are common across .NET implementations. This means you can use .NET for Apache Spark anywhere you write...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 21
    zvt

    zvt

    Modular quant framework

    For practical trading, a complex algorithm is fragile, a complex algorithm building on a complex facility is more fragile, complex algorithm building on a complex facility by a complex team is more and more fragile. zvt wants to provide a simple facility for building a straightforward algorithm. Technologies come and technologies go, but market insight is forever. Your world is built by core concepts inside you, so it’s you. zvt world is built by core concepts inside the market, so it’s zvt....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Tiny CUDA Neural Networks

    Tiny CUDA Neural Networks

    Lightning fast C++/CUDA neural network framework

    This is a small, self-contained framework for training and querying neural networks. Most notably, it contains a lightning-fast "fully fused" multi-layer perceptron (technical paper), a versatile multiresolution hash encoding (technical paper), as well as support for various other input encodings, losses, and optimizers. We provide a sample application where an image function (x,y) -> (R,G,B) is learned. The fully fused MLP component of this framework requires a very large amount of shared...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 23
    Deployer

    Deployer

    Deployment tool with support for popular frameworks out of the box

    A deployment tool written in PHP with support for popular frameworks out of the box. Deployer is a cli tool for deployment of any PHP applications, including frameworks such as Laravel, Symfony, Zend Framework and many more. Main concept of Deployer is recipe, a php file containing tasks definitions. Recipe can require other recipes and extend/ override functionality. Also Deployer comes with bunch of ready to use recipes from community for Slack, etc. Deployer can be easily installed via...
    Downloads: 7 This Week
    Last Update:
    See Project
  • 24
    Argo Workflows

    Argo Workflows

    Workflow engine for Kubernetes

    ...Model multi-step workflows as a sequence of tasks or capture the dependencies between tasks using a directed acyclic graph (DAG). Easily run compute intensive jobs for machine learning or data processing in a fraction of the time using Argo Workflows on Kubernetes. Run CI/CD pipelines natively on Kubernetes without configuring complex software development products. Argo Workflows is the most popular workflow execution engine for Kubernetes. It can run 1000s of workflows a day, each with 1000s of concurrent tasks. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    MMDeploy

    MMDeploy

    OpenMMLab Model Deployment Framework

    MMDeploy is an open-source deep learning model deployment toolset. It is a part of the OpenMMLab project. Models can be exported and run in several backends, and more will be compatible. All kinds of modules in the SDK can be extended, such as Transform for image processing, Net for Neural Network inference, Module for postprocessing and so on. Install and build your target backend. ONNX Runtime is a cross-platform inference and training accelerator compatible with many popular ML/DNN...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • Next