Showing 19 open source projects for "linux software"

View related business solutions
  • Build on Google Cloud with $300 in Free Credit Icon
    Build on Google Cloud with $300 in Free Credit

    New to Google Cloud? Get $300 in free credit to explore Compute Engine, BigQuery, Cloud Run, Vertex AI, and 150+ other products.

    Start your next project with $300 in free Google Cloud credit. Spin up VMs, run containers, query exabytes in BigQuery, or build AI apps with Vertex AI and Gemini. Once your credits are used, keep building with 20+ products with free monthly usage, including Compute Engine, Cloud Storage, GKE, and Cloud Run functions. Sign up to start building right away.
    Start Free Trial
  • Ship AI Apps Faster with Vertex AI Icon
    Ship AI Apps Faster with Vertex AI

    Go from idea to deployed AI app without managing infrastructure. Vertex AI offers one platform for the entire AI development lifecycle.

    Ship AI apps and features faster with Vertex AI—your end-to-end AI platform. Access Gemini 3 and 200+ foundation models, fine-tune for your needs, and deploy with enterprise-grade MLOps. Build chatbots, agents, or custom models. New customers get $300 in free credit.
    Try Vertex AI Free
  • 1
    Clapeyron

    Clapeyron

    Framework for the development and use of fluid-thermodynamic models

    Welcome to Clapeyron! This module provides both a large library of thermodynamic models and a framework for one to easily implement their own models. Clapeyron provides a framework for the development and use of fluid-thermodynamic models, including SAFT, cubic, activity, multi-parameter, and COSMO-SAC.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 2
    MLJ

    MLJ

    A Julia machine learning framework

    MLJ (Machine Learning in Julia) is a toolbox written in Julia providing a common interface and meta-algorithms for selecting, tuning, evaluating, composing and comparing about 200 machine learning models written in Julia and other languages. The functionality of MLJ is distributed over several repositories illustrated in the dependency chart below. These repositories live at the JuliaAI umbrella organization.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 3
    InvertibleNetworks.jl

    InvertibleNetworks.jl

    A Julia framework for invertible neural networks

    Building blocks for invertible neural networks in the Julia programming language.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 4
    ConcurrentSim.jl

    ConcurrentSim.jl

    Discrete event process oriented simulation framework written in Julia

    A discrete event process-oriented simulation framework written in Julia inspired by the Python library SimPy. One of the longest-lived Julia packages (originally under the name SimJulia).
    Downloads: 1 This Week
    Last Update:
    See Project
  • Easily Host LLMs and Web Apps on Cloud Run Icon
    Easily Host LLMs and Web Apps on Cloud Run

    Run everything from popular models with on-demand NVIDIA L4 GPUs to web apps without infrastructure management.

    Run frontend and backend services, batch jobs, host LLMs, and queue processing workloads without the need to manage infrastructure. Cloud Run gives you on-demand GPU access for hosting LLMs and running real-time AI—with 5-second cold starts and automatic scale-to-zero so you only pay for actual usage. New customers get $300 in free credit to start.
    Try Cloud Run Free
  • 5
    Agents.jl

    Agents.jl

    Agent-based modeling framework in Julia

    Agents.jl is a pure Julia framework for agent-based modeling (ABM): a computational simulation methodology where autonomous agents react to their environment (including other agents) given a predefined set of rules. The simplicity of Agents.jl is due to the intuitive space-agnostic modeling approach we have implemented: agent actions are specified using generically named functions (such as "move agent" or "find nearby agents") that do not depend on the actual space the agents exist in, nor...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 6
    ModelingToolkit.jl

    ModelingToolkit.jl

    Modeling framework for automatically parallelized scientific ML

    ModelingToolkit.jl is a modeling language for high-performance symbolic-numeric computation in scientific computing and scientific machine learning. It then mixes ideas from symbolic computational algebra systems with causal and acausal equation-based modeling frameworks to give an extendable and parallel modeling system. It allows for users to give a high-level description of a model for symbolic preprocessing to analyze and enhance the model. Automatic symbolic transformations, such as...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 7
    ReTest.jl

    ReTest.jl

    Testing framework for Julia

    ReTest is a testing framework for Julia allowing defining tests in source files, whose execution is deferred and triggered on demand. This is useful when one likes to have definitions of methods and corresponding tests close to each other. This is also useful for code that is not (yet) organized as a package, and where one doesn't want to maintain a separate set of files for tests. Filtering run testsets with a Regex, which is matched against the descriptions of testsets. This is useful for...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 8
    Trixi.jl

    Trixi.jl

    Trixi.jl: Adaptive high-order numerical simulations of hyperbolic PDEs

    Trixi.jl is a numerical simulation framework for hyperbolic conservation laws written in Julia. A key objective for the framework is to be useful to both scientists and students. Therefore, next to having an extensible design with a fast implementation, Trixi.jl is focused on being easy to use for new or inexperienced users, including the installation and postprocessing procedures.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 9
    MLJBase.jl

    MLJBase.jl

    Core functionality for the MLJ machine learning framework

    Repository for developers that provides core functionality for the MLJ machine learning framework. MLJ is a Julia framework for combining and tuning machine learning models. This repository provides core functionality for MLJ.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 99.99% Uptime for MySQL and PostgreSQL on Google Cloud Icon
    99.99% Uptime for MySQL and PostgreSQL on Google Cloud

    Enterprise Plus edition delivers sub-second maintenance downtime and 2x read/write performance. Built for critical apps.

    Cloud SQL Enterprise Plus gives you a 99.99% availability SLA with near-zero downtime maintenance—typically under 10 seconds. Get 2x better read/write performance, intelligent data caching, and 35 days of point-in-time recovery. Supports MySQL, PostgreSQL, and SQL Server with built-in vector search for gen AI apps. New customers get $300 in free credit.
    Try Cloud SQL Free
  • 10
    Catlab.jl

    Catlab.jl

    A framework for applied category theory in the Julia language

    Catlab.jl is a framework for applied and computational category theory, written in the Julia language. Catlab provides a programming library and interactive interface for applications of category theory to scientific and engineering fields. It emphasizes monoidal categories due to their wide applicability but can support any categorical structure that is formalizable as a generalized algebraic theory. First and foremost, Catlab provides data structures, algorithms, and serialization for...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 11
    BenchmarkTools.jl

    BenchmarkTools.jl

    A benchmarking framework for the Julia language

    BenchmarkTools makes performance tracking of Julia code easy by supplying a framework for writing and running groups of benchmarks as well as comparing benchmark results. This package is used to write and run the benchmarks found in BaseBenchmarks.jl. The CI infrastructure for automated performance testing of the Julia language is not in this package but can be found in Nanosoldier.jl. Our story begins with two packages, "Benchmarks" and "BenchmarkTrackers". The Benchmarks package...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 12
    StructuralEquationModels.jl

    StructuralEquationModels.jl

    A fast and flexible Structural Equation Modelling Framework

    This is a package for Structural Equation Modeling in development. It is written for extensibility, that is, you can easily define your own objective functions and other parts of the model. At the same time, it is (very) fast. We provide fast objective functions, gradients, and for some cases hessians as well as approximations thereof. As a user, you can easily define custom loss functions. For those, you can decide to provide analytical gradients or use finite difference approximation /...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 13
    AppleAccelerate.jl

    AppleAccelerate.jl

    Julia interface to the macOS Accelerate framework

    Julia interface to the macOS Accelerate framework. This provides a Julia interface to some of the macOS Accelerate frameworks. At the moment, this package provides access to Accelerate BLAS and LAPACK using the libblastrampoline framework, an interface to the array-oriented functions, which provide a vectorized form for many common mathematical functions. The performance is significantly better than using standard libm functions in some cases, though there does appear to be some reduced...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    GeoStats.jl

    GeoStats.jl

    An extensible framework for geospatial data science

    GeoStats.jl is a Julia framework for geospatial data science and geostatistical modeling. It’s fully implemented in Julia and designed to provide an extensible, high-performance stack that handles spatial domains, interpolation, simulation, learning, and visualization. The package is modular: it breaks out geometry, spatial domains, transforms, variograms, covariance models, and modeling into subpackages (e.g., GeoStatsBase, GeoStatsModels, GeoStatsTransforms). Users can represent...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Genie.jl

    Genie.jl

    The highly productive Julia web framework

    Genie Framework includes all you need to quickly build production-ready web applications with Julia. Develop Julia backends, create beautiful web UIs, build data applications and dashboards, integrate with databases and set up high-performance web services and APIs. Genie Builder is a free VSCode plugin for quickly building Julia apps without writing frontend code. Drag and drop UI components such as text, sliders, plots, and data tables onto a canvas, and connect them to the variables in...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    AbstractFFTs.jl

    AbstractFFTs.jl

    A Julia framework for implementing FFTs

    A general framework for fast Fourier transforms (FFTs) in Julia. This package is mainly not intended to be used directly. Instead, developers of packages that implement FFTs (such as FFTW.jl or FastTransforms.jl) extend the types/functions defined in AbstractFFTs. This allows multiple FFT packages to co-exist with the same underlying fft(x) and plan_fft(x) interface.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 17
    Knet

    Knet

    Koç University deep learning framework

    Knet.jl is a deep learning package implemented in Julia, so you should be able to run it on any machine that can run Julia. It has been extensively tested on Linux machines with NVIDIA GPUs and CUDA libraries, and it has been reported to work on OSX and Windows. If you would like to try it on your own computer, please follow the instructions on Installation. If you would like to try working with a GPU and do not have access to one, take a look at Using Amazon AWS or Using Microsoft Azure. If...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 18
    JuliaFEM.jl

    JuliaFEM.jl

    The JuliaFEM software library is a framework

    The JuliaFEM software library is a framework that allows for the distributed processing of large Finite Element Models across clusters of computers using simple programming models. It is designed to scale up from single servers to thousands of machines, each offering local computation and storage. The JuliaFEM software library is a framework that allows for the distributed processing of large Finite Element Models across clusters of computers using simple programming models. It is designed...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 19
    Mocha.jl

    Mocha.jl

    Deep Learning framework for Julia

    Mocha.jl is a deep learning framework for Julia, inspired by the C++ Caffe framework. It offers efficient implementations of gradient descent solvers and common neural network layers, supports optional unsupervised pre-training, and allows switching to a GPU backend for accelerated performance. The development of Mocha.jl happens in relative early days of Julia. Now that both Julia and the ecosystem has evolved significantly, and with some exciting new tech such as writing GPU kernels...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next
MongoDB Logo MongoDB
Gen AI apps are built with MongoDB Atlas
Atlas offers built-in vector search and global availability across 125+ regions. Start building AI apps faster, all in one place.
Try Free →