5 projects for "python neural" with 2 filters applied:

  • Cloud-based help desk software with ServoDesk Icon
    Cloud-based help desk software with ServoDesk

    Full access to Enterprise features. No credit card required.

    What if You Could Automate 90% of Your Repetitive Tasks in Under 30 Days? At ServoDesk, we help businesses like yours automate operations with AI, allowing you to cut service times in half and increase productivity by 25% - without hiring more staff.
    Try ServoDesk for free
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    Build gen AI apps with an all-in-one modern database: MongoDB Atlas

    MongoDB Atlas provides built-in vector search and a flexible document model so developers can build, scale, and run gen AI apps without stitching together multiple databases. From LLM integration to semantic search, Atlas simplifies your AI architecture—and it’s free to get started.
    Start Free
  • 1
    TorchQuantum

    TorchQuantum

    A PyTorch-based framework for Quantum Classical Simulation

    A PyTorch-based framework for Quantum Classical Simulation, Quantum Machine Learning, Quantum Neural Networks, Parameterized Quantum Circuits with support for easy deployments on real quantum computers. Researchers on quantum algorithm design, parameterized quantum circuit training, quantum optimal control, quantum machine learning, and quantum neural networks. Dynamic computation graph, automatic gradient computation, fast GPU support, batch model terrorized processing.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 2
    tinygrad

    tinygrad

    Deep learning framework

    This may not be the best deep learning framework, but it is a deep learning framework. Due to its extreme simplicity, it aims to be the easiest framework to add new accelerators to, with support for both inference and training. If XLA is CISC, tinygrad is RISC.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    towhee

    towhee

    Framework that is dedicated to making neural data processing

    Towhee is an open-source machine-learning pipeline that helps you encode your unstructured data into embeddings. You can use our Python API to build a prototype of your pipeline and use Towhee to automatically optimize it for production-ready environments. From images to text to 3D molecular structures, Towhee supports data transformation for nearly 20 different unstructured data modalities. We provide end-to-end pipeline optimizations, covering everything from data decoding/encoding, to...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Model Search

    Model Search

    Framework that implements AutoML algorithms

    Model Search is an AutoML research system for discovering neural network architectures with minimal human intervention. Instead of hand-crafting models, you define a search space and objectives, then the system explores candidate architectures using controllers and population-based strategies. It supports multiple tasks (such as vision or text) by letting you express reusable building blocks—layers, cells, and topologies—that the search can recombine. Training, evaluation, and promotion of...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Loan management software that makes it easy. Icon
    Loan management software that makes it easy.

    Ideal for lending professionals who are looking for a feature rich loan management system

    Bryt Software is ideal for lending professionals who are looking for a feature rich loan management system that is intuitive and easy to use. We are 100% cloud-based, software as a service. We believe in providing our customers with fair and honest pricing. Our monthly fees are based on your number of users and we have a minimal implementation charge.
    Learn More
  • 5
    seq2seq

    seq2seq

    A general-purpose encoder-decoder framework for Tensorflow

    seq2seq is an early, influential TensorFlow reference implementation for sequence-to-sequence learning with attention, covering tasks like neural machine translation, summarization, and dialogue. It packaged encoders, decoders, attention mechanisms, and beam search into a modular training and inference framework. The codebase showcased best practices for batching, bucketing by sequence length, and handling variable-length sequences efficiently on GPUs. Researchers used it as a baseline to...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next