Showing 15 open source projects for "python q learning"

View related business solutions
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    Build gen AI apps with an all-in-one modern database: MongoDB Atlas

    MongoDB Atlas provides built-in vector search and a flexible document model so developers can build, scale, and run gen AI apps without stitching together multiple databases. From LLM integration to semantic search, Atlas simplifies your AI architecture—and it’s free to get started.
    Start Free
  • Level Up Your Cyber Defense with External Threat Management Icon
    Level Up Your Cyber Defense with External Threat Management

    See every risk before it hits. From exposed data to dark web chatter. All in one unified view.

    Move beyond alerts. Gain full visibility, context, and control over your external attack surface to stay ahead of every threat.
    Try for Free
  • 1
    AIQuant

    AIQuant

    AI-powered platform for quantitative trading

    ai_quant_trade is an AI-powered, one-stop open-source platform for quantitative trading—ranging from learning and simulation to actual trading. It consolidates stock trading knowledge, strategy examples, factor discovery, traditional rules-based strategies, various machine learning and deep learning methods, reinforcement learning, graph neural networks, high-frequency trading, C++ deployment, and Jupyter Notebook examples for practical hands-on use. Stock trading strategies: large models,...
    Downloads: 8 This Week
    Last Update:
    See Project
  • 2
    PyBroker

    PyBroker

    Algorithmic Trading in Python with Machine Learning

    Are you looking to enhance your trading strategies with the power of Python and machine learning? Then you need to check out PyBroker! This Python framework is designed for developing algorithmic trading strategies, with a focus on strategies that use machine learning. With PyBroker, you can easily create and fine-tune trading rules, build powerful models, and gain valuable insights into your strategy’s performance.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Qlib

    Qlib

    Qlib is an AI-oriented quantitative investment platform

    Qlib is an AI-oriented quantitative investment platform, which aims to realize the potential, empower the research, and create the value of AI technologies in quantitative investment. With Qlib, you can easily try your ideas to create better Quant investment strategies. An increasing number of SOTA Quant research works/papers are released in Qlib. With Qlib, users can easily try their ideas to create better Quant investment strategies. At the module level, Qlib is a platform that consists of...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 4
    NeuralProphet

    NeuralProphet

    A simple forecasting package

    NeuralProphet bridges the gap between traditional time-series models and deep learning methods. It's based on PyTorch and can be installed using pip. A Neural Network based Time-Series model, inspired by Facebook Prophet and AR-Net, built on PyTorch. You can find the datasets used in the tutorials, including data preprocessing examples, in our neuralprophet-data repository. The documentation page may not we entirely up to date. Docstrings should be reliable, please refer to those when in...
    Downloads: 1 This Week
    Last Update:
    See Project
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • 5
    Qbot

    Qbot

    AI-powered Quantitative Investment Research Platform

    Qbot is an open source quantitative research and trading platform that provides a full pipeline from data ingestion and strategy development to backtesting, simulation, and (optionally) live trading. It bundles a lightweight GUI client (built with wxPython) and a modular backend so researchers can iterate on strategies, run batch backtests, and validate ideas in a near-real simulated environment that models latency and slippage. The project places special emphasis on AI-driven strategies —...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 6
    AI Hedge Fund

    AI Hedge Fund

    An AI Hedge Fund Team

    This repository demonstrates how to build a simplified, automated hedge fund strategy powered by AI/ML. It integrates financial data collection, preprocessing, feature engineering, and predictive modeling to simulate decision-making in trading. The code shows workflows for pulling stock or market data, applying machine learning algorithms to forecast trends, and generating buy/sell/hold signals based on the predictions. Its structure is educational: intended more as a proof-of-concept than a...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 7
    OpenBB Terminal

    OpenBB Terminal

    Investment research for everyone, anywhere

    Fully written in python which is one of the most used programming languages due to its simplified syntax and shallow learning curve. It is the first time in history that users, regardless of their background, can so easily add features to an investment research platform. The MIT Open Source license allows any user to fork the project to either add features to the broader community or create their own customized terminal version.
    Downloads: 10 This Week
    Last Update:
    See Project
  • 8
    PyTorch Forecasting

    PyTorch Forecasting

    Time series forecasting with PyTorch

    PyTorch Forecasting aims to ease state-of-the-art time series forecasting with neural networks for both real-world cases and research alike. The goal is to provide a high-level API with maximum flexibility for professionals and reasonable defaults for beginners. A time series dataset class that abstracts handling variable transformations, missing values, randomized subsampling, multiple history lengths, etc. A base model class that provides basic training of time series models along with...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    AnyTrading

    AnyTrading

    The most simple, flexible, and comprehensive OpenAI Gym trading

    gym-anytrading is an OpenAI Gym-compatible environment designed for developing and testing reinforcement learning algorithms on trading strategies. It simulates trading environments for financial markets, including stocks and forex.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 10
    FinGPT

    FinGPT

    Open-Source Financial Large Language Models!

    FinGPT is an open-source large language model tailored specifically for financial tasks. Developed by AI4Finance Foundation, it is designed to assist with various financial applications, such as forecasting, financial sentiment analysis, and portfolio management. FinGPT has been trained on a diverse range of financial datasets, making it a powerful tool for finance professionals looking to leverage AI for data-driven decision-making. The model is freely available on platforms like Hugging...
    Leader badge
    Downloads: 15 This Week
    Last Update:
    See Project
  • 11
    TradingGym

    TradingGym

    Trading backtesting environment for training reinforcement learning

    TradingGym is a toolkit (in Python) for creating trading and backtesting environments, especially for reinforcement learning agents, but also for simpler rule-based algorithms. It follows a design inspired by OpenAI Gym, offering various environments, data formats (tick data and OHLC), and tools to simulate trading with costs, position limits, observation windows etc.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    TradeMaster

    TradeMaster

    TradeMaster is an open-source platform for quantitative trading

    TradeMaster is a first-of-its-kind, best-in-class open-source platform for quantitative trading (QT) empowered by reinforcement learning (RL), which covers the full pipeline for the design, implementation, evaluation and deployment of RL-based algorithms. TradeMaster is composed of 6 key modules: 1) multi-modality market data of different financial assets at multiple granularities; 2) whole data preprocessing pipeline; 3) a series of high-fidelity data-driven market simulators for mainstream...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Deep learning time series forecasting

    Deep learning time series forecasting

    Deep learning PyTorch library for time series forecasting

    Example image Flow Forecast (FF) is an open-source deep learning for time series forecasting framework. It provides all the latest state-of-the-art models (transformers, attention models, GRUs) and cutting-edge concepts with easy-to-understand interpretability metrics, cloud provider integration, and model serving capabilities. Flow Forecast was the first time series framework to feature support for transformer-based models and remains the only true end-to-end deep learning for time series...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 14
    AlphaPy

    AlphaPy

    Python AutoML for Trading Systems and Sports Betting

    AlphaPy is a Python-based AutoML framework tailored for trading systems and sports betting applications. Built on popular libraries like scikit-learn and pandas, it enables data scientists and speculators to craft predictive models, ensemble strategies, and automated forecasting systems with minimal setup. Run machine learning models using scikit-learn, Keras, xgboost, LightGBM, and CatBoost.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    abu

    abu

    Abu quantitative trading system (stocks, options, futures, bitcoin)

    Abu Quantitative Integrated AI Big Data System, K-Line Pattern System, Classic Indicator System, Trend Analysis System, Time Series Dimension System, Statistical Probability System, and Traditional Moving Average System conduct in-depth quantitative analysis of investment varieties, completely crossing the user's complex code quantification stage, more suitable for ordinary people to use, towards the era of vectorization 2.0. The above system combines hundreds of seed quantitative models,...
    Downloads: 1 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next