Learning to Learn, created by Google DeepMind, is an experimental framework that implements meta-learning—training neural networks to learn optimization strategies themselves rather than relying on manually designed algorithms like Adam or SGD. The repository provides code for training and evaluating learned optimizers that can generalize across different problem types, such as quadratic functions and image classification tasks (MNIST and CIFAR-10). Using TensorFlow, it defines a meta-optimizer model that learns by observing and adapting to the optimization trajectories of other models. The project allows users to compare performance between traditional optimizers and the learned optimizer (L2L) on various benchmarks, demonstrating how optimization strategies can be learned through experience. ...