Search Results for "matlab code for image classification using svm"

Showing 1 open source project for "matlab code for image classification using svm"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Desktop and Mobile Device Management Software Icon
    Desktop and Mobile Device Management Software

    It's a modern take on desktop management that can be scaled as per organizational needs.

    Desktop Central is a unified endpoint management (UEM) solution that helps in managing servers, laptops, desktops, smartphones, and tablets from a central location.
    Learn More
  • 1
    Learning to Learn in TensorFlow

    Learning to Learn in TensorFlow

    Learning to Learn in TensorFlow

    Learning to Learn, created by Google DeepMind, is an experimental framework that implements meta-learning—training neural networks to learn optimization strategies themselves rather than relying on manually designed algorithms like Adam or SGD. The repository provides code for training and evaluating learned optimizers that can generalize across different problem types, such as quadratic functions and image classification tasks (MNIST and CIFAR-10). Using TensorFlow, it defines a meta-optimizer model that learns by observing and adapting to the optimization trajectories of other models. The project allows users to compare performance between traditional optimizers and the learned optimizer (L2L) on various benchmarks, demonstrating how optimization strategies can be learned through experience. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next