Showing 2 open source projects for "lib"

View related business solutions
  • Outgrown Windows Task Scheduler? Icon
    Outgrown Windows Task Scheduler?

    Free diagnostic identifies where your workflow is breaking down—with instant analysis of your scheduling environment.

    Windows Task Scheduler wasn't built for complex, cross-platform automation. Get a free diagnostic that shows exactly where things are failing and provides remediation recommendations. Interactive HTML report delivered in minutes.
    Download Free Tool
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    GDAL wheels for linux

    GDAL wheels for linux

    GDAL wheels for python and C/C++ projects (Linux only)

    To use precompiled wheels: 1) go to releases (Files) and download tarball needed; 2) install it with command: python3 -m pip install /path/to/wheel.whl Or simply use URL in pip: python3 -m pip install https://sourceforge.net/projects/gdal-wheels-for-linux/files/GDAL-3.1.4-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl/download URL may be found under "View details" button (i) To use GDAL in C/C++ project you need to link gdal lib AND all libs located at dir GDAL.libs (usually this folder resides inside python site-packages) To compile your own wheels see information given at forefather project: https://github.com/youngpm/gdalmanylinux Usually this is done via command `make wheels` GDAL wheels for Windows are provided by Christoph Gohlke at https://www.lfd.uci.edu/~gohlke/pythonlibs/#gdal Built with PROJ (proj.db is included), GEOS, EXPAT. ...
    Downloads: 7 This Week
    Last Update:
    See Project
  • 2
    PySptools

    PySptools

    Hyperspectral algorithms for Python

    ...The functions and classes are organized by topics: * abundance maps: FCLS, NNLS, UCLS * classification: AbundanceClassification, NormXCorr, KMeans SAM, SID, SVC * detection: ACE, CEM, GLRT, MatchedFilter, OSP * distance: chebychev, NormXCorr, SAM, SID * endmembers extraction: ATGP, FIPPI, NFINDR, PPI * material count: HfcVd, HySime * noise: Savitzky Golay, MNF, whiten * sigproc: bilateral * sklearn: HyperEstimatorCrossVal, HyperSVC and others * spectro: convex hull quotient, features extraction (tetracorder style), USGS06 lib interface * util: load_ENVI_file, load_ENVI_spec_lib, corr, cov and others The library do an extensive use of the numpy numeric library and can achieve good speed. The library is mature enough and is very usable even if the development is at a beta step.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next