Showing 22 open source projects for "pyscripter python 2"

View related business solutions
  • Enterprise-grade ITSM, for every business Icon
    Enterprise-grade ITSM, for every business

    Give your IT, operations, and business teams the ability to deliver exceptional services—without the complexity.

    Freshservice is an intuitive, AI-powered platform that helps IT, operations, and business teams deliver exceptional service without the usual complexity. Automate repetitive tasks, resolve issues faster, and provide seamless support across the organization. From managing incidents and assets to driving smarter decisions, Freshservice makes it easy to stay efficient and scale with confidence.
    Try it Free
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • 1
    Python Outlier Detection

    Python Outlier Detection

    A Python toolbox for scalable outlier detection

    PyOD is a comprehensive and scalable Python toolkit for detecting outlying objects in multivariate data. This exciting yet challenging field is commonly referred as outlier detection or anomaly detection. PyOD includes more than 30 detection algorithms, from classical LOF (SIGMOD 2000) to the latest COPOD (ICDM 2020) and SUOD (MLSys 2021). Since 2017, PyOD [AZNL19] has been successfully used in numerous academic researches and commercial products [AZHC+21, AZNHL19]. PyOD has multiple neural...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    fastai

    fastai

    Deep learning library

    ... of many deep learning and data processing techniques in terms of decoupled abstractions. These abstractions can be expressed concisely and clearly by leveraging the dynamism of the underlying Python language and the flexibility of the PyTorch library. fastai is organized around two main design goals: to be approachable and rapidly productive, while also being deeply hackable and configurable. It is built on top of a hierarchy of lower-level APIs which provide composable building blocks.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 3
    OpenVINO Training Extensions

    OpenVINO Training Extensions

    Trainable models and NN optimization tools

    OpenVINO™ Training Extensions provide a convenient environment to train Deep Learning models and convert them using the OpenVINO™ toolkit for optimized inference. When ote_cli is installed in the virtual environment, you can use the ote command line interface to perform various actions for templates related to the chosen task type, such as running, training, evaluating, exporting, etc. ote train trains a model (a particular model template) on a dataset and saves results in two files. ote...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 4
    DocTR

    DocTR

    Library for OCR-related tasks powered by Deep Learning

    DocTR provides an easy and powerful way to extract valuable information from your documents. Seemlessly process documents for Natural Language Understanding tasks: we provide OCR predictors to parse textual information (localize and identify each word) from your documents. Robust 2-stage (detection + recognition) OCR predictors with pretrained parameters. User-friendly, 3 lines of code to load a document and extract text with a predictor. State-of-the-art performances on public document...
    Downloads: 3 This Week
    Last Update:
    See Project
  • Crowdtesting That Delivers | Testeum Icon
    Crowdtesting That Delivers | Testeum

    Unfixed bugs delaying your launch? Test with real users globally – check it out for free, results in days.

    Testeum connects your software, app, or website to a worldwide network of testers, delivering detailed feedback in under 48 hours. Ensure functionality and refine UX on real devices, all at a fraction of traditional costs. Trusted by startups and enterprises alike, our platform streamlines quality assurance with actionable insights.
    Click to perfect your product now.
  • 5
    Thinc

    Thinc

    A refreshing functional take on deep learning

    ..., configure and deploy custom models built with their favorite framework. Switch between PyTorch, TensorFlow and MXNet models without changing your application, or even create mutant hybrids using zero-copy array interchange. Develop faster and catch bugs sooner with sophisticated type checking. Trying to pass a 1-dimensional array into a model that expects two dimensions? That’s a type error. Your editor can pick it up as the code leaves your fingers.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 6
    Make-A-Video - Pytorch (wip)

    Make-A-Video - Pytorch (wip)

    Implementation of Make-A-Video, new SOTA text to video generator

    Implementation of Make-A-Video, new SOTA text to video generator from Meta AI, in Pytorch. They combine pseudo-3d convolutions (axial convolutions) and temporal attention and show much better temporal fusion. The pseudo-3d convolutions isn't a new concept. It has been explored before in other contexts, say for protein contact prediction as "dimensional hybrid residual networks". The gist of the paper comes down to, take a SOTA text-to-image model (here they use DALL-E2, but the same learning...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    AWS Deep Learning Containers

    AWS Deep Learning Containers

    A set of Docker images for training and serving models in TensorFlow

    AWS Deep Learning Containers (DLCs) are a set of Docker images for training and serving models in TensorFlow, TensorFlow 2, PyTorch, and MXNet. Deep Learning Containers provide optimized environments with TensorFlow and MXNet, Nvidia CUDA (for GPU instances), and Intel MKL (for CPU instances) libraries and are available in the Amazon Elastic Container Registry (Amazon ECR). The AWS DLCs are used in Amazon SageMaker as the default vehicles for your SageMaker jobs such as training, inference...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 8
    DeepSpeed

    DeepSpeed

    Deep learning optimization library: makes distributed training easy

    DeepSpeed is an easy-to-use deep learning optimization software suite that enables unprecedented scale and speed for Deep Learning Training and Inference. With DeepSpeed you can: 1. Train/Inference dense or sparse models with billions or trillions of parameters 2. Achieve excellent system throughput and efficiently scale to thousands of GPUs 3. Train/Inference on resource constrained GPU systems 4. Achieve unprecedented low latency and high throughput for inference 5. Achieve extreme...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 9
    DeepSpeed MII

    DeepSpeed MII

    MII makes low-latency and high-throughput inference possible

    ... is still restricted by two critical factors: inference latency and cost. DeepSpeed-MII is a new open-source python library from DeepSpeed, aimed towards making low-latency, low-cost inference of powerful models not only feasible but also easily accessible. MII offers access to the highly optimized implementation of thousands of widely used DL models. MII-supported models achieve significantly lower latency and cost compared to their original implementation.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Build Securely on Azure with Proven Frameworks Icon
    Build Securely on Azure with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 10
    Spektral

    Spektral

    Graph Neural Networks with Keras and Tensorflow 2

    Spektral is a Python library for graph deep learning, based on the Keras API and TensorFlow 2. The main goal of this project is to provide a simple but flexible framework for creating graph neural networks (GNNs). You can use Spektral for classifying the users of a social network, predicting molecular properties, generating new graphs with GANs, clustering nodes, predicting links, and any other task where data is described by graphs. Spektral implements some of the most popular layers for graph...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    MELAGE
    ... the localization of the regions of interest. It has been developed in Python with a user-friendly interface for healthcare personnel. Thanks to Artificial Intelligence and deep learning methods, MELAGE has tools to estimate volumes of different regions of interest in both images. Moreover, it allows to perform linear, area and volumetric measurements in a very intuitive and easy way, being able to instantly see the segmented region in a new tab. Please see https://melage.uca.es/
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    DeepCTR

    DeepCTR

    Package of deep-learning based CTR models

    DeepCTR is a Easy-to-use,Modular and Extendible package of deep-learning based CTR models along with lots of core components layers which can be used to easily build custom models. You can use any complex model with model.fit(), and model.predict(). Provide tf.keras.Model like interface for quick experiment. Provide tensorflow estimator interface for large scale data and distributed training. It is compatible with both tf 1.x and tf 2.x. With the great success of deep learning,DNN-based...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Auto-PyTorch

    Auto-PyTorch

    Automatic architecture search and hyperparameter optimization

    While early AutoML frameworks focused on optimizing traditional ML pipelines and their hyperparameters, another trend in AutoML is to focus on neural architecture search. To bring the best of these two worlds together, we developed Auto-PyTorch, which jointly and robustly optimizes the network architecture and the training hyperparameters to enable fully automated deep learning (AutoDL). Auto-PyTorch is mainly developed to support tabular data (classification, regression) and time series data...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Hello AI World

    Hello AI World

    Guide to deploying deep-learning inference networks

    Hello AI World is a great way to start using Jetson and experiencing the power of AI. In just a couple of hours, you can have a set of deep learning inference demos up and running for realtime image classification and object detection on your Jetson Developer Kit with JetPack SDK and NVIDIA TensorRT. The tutorial focuses on networks related to computer vision, and includes the use of live cameras. You’ll also get to code your own easy-to-follow recognition program in Python or C++, and train...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    SageMaker MXNet Inference Toolkit

    SageMaker MXNet Inference Toolkit

    Toolkit for allowing inference and serving with MXNet in SageMaker

    SageMaker MXNet Inference Toolkit is an open-source library for serving MXNet models on Amazon SageMaker. This library provides default pre-processing, predict and postprocessing for certain MXNet model types and utilizes the SageMaker Inference Toolkit for starting up the model server, which is responsible for handling inference requests. AWS Deep Learning Containers (DLCs) are a set of Docker images for training and serving models in TensorFlow, TensorFlow 2, PyTorch, and MXNet. Deep Learning...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Perceptual Similarity Metric and Dataset

    Perceptual Similarity Metric and Dataset

    LPIPS metric. pip install lpips

    While it is nearly effortless for humans to quickly assess the perceptual similarity between two images, the underlying processes are thought to be quite complex. Despite this, the most widely used perceptual metrics today, such as PSNR and SSIM, are simple, shallow functions, and fail to account for many nuances of human perception. Recently, the deep learning community has found that features of the VGG network trained on ImageNet classification has been remarkably useful as a training loss...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    BerryNet

    BerryNet

    Deep learning gateway on Raspberry Pi and other edge devices

    This project turns edge devices such as Raspberry Pi into an intelligent gateway with deep learning running on it. No internet connection is required, everything is done locally on the edge device itself. Further, multiple edge devices can create a distributed AIoT network. At DT42, we believe that bringing deep learning to edge devices is the trend towards the future. It not only saves costs of data transmission and storage but also makes devices able to respond according to the events...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Dive-into-DL-TensorFlow2.0

    Dive-into-DL-TensorFlow2.0

    Dive into Deep Learning

    ... reconstruction for the Chinese version of this book. In addition, this project also refers to the project Dive-into-DL-PyTorch , which refactored PyTorch in the Chinese version of this book, and I would like to express my gratitude here. This repository mainly contains two folders, code and docs (plus some data stored in data). The code folder is the relevant jupyter notebook code for each chapter (based on TensorFlow2); the docs folder is the relevant content in the book.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    ChainerCV

    ChainerCV

    ChainerCV: a Library for Deep Learning in Computer Vision

    ChainerCV is a collection of tools to train and run neural networks for computer vision tasks using Chainer. In ChainerCV, we define the object detection task as a problem of, given an image, bounding box-based localization and categorization of objects. Bounding boxes in an image are represented as a two-dimensional array of shape (R,4), where R is the number of bounding boxes and the second axis corresponds to the coordinates of bounding boxes. ChainerCV supports dataset loaders, which can...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20

    CRP - Chemical Reaction Prediction

    Predicting Organic Reactions using Neural Networks.

    The intend is to solve the forward-reaction prediction problem, where the reactants are known and the interest is in generating the reaction products using Deep learning. This Graphical User Interface takes simplified molecular-input line-entry system (SMILES) as an input and generates the product SMILE & molecule. Beam search is used in Version 2, to generate top 5 predictions. Maximum input length for the model is 15 (excluding spaces).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Deep Learning with Keras and Tensorflow

    Deep Learning with Keras and Tensorflow

    Introduction to Deep Neural Networks with Keras and Tensorflow

    Introduction to Deep Neural Networks with Keras and Tensorflow. To date tensorflow comes in two different packages, namely tensorflow and tensorflow-gpu, whether you want to install the framework with CPU-only or GPU support, respectively. NVIDIA Drivers and CuDNN must be installed and configured before hand. Please refer to the official Tensorflow documentation for further details. Since version 0.9 Theano introduced the libgpuarray in the stable release (it was previously only available...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Monk Computer Vision

    Monk Computer Vision

    A low code unified framework for computer vision and deep learning

    Monk is an open source low code programming environment to reduce the cognitive load faced by entry level programmers while catering to the needs of Expert Deep Learning engineers. There are three libraries in this opensource set. - Monk Classiciation- https://monkai.org. A Unified wrapper over major deep learning frameworks. Our core focus area is at the intersection of Computer Vision and Deep Learning algorithms. - Monk Object Detection -...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.