Showing 25 open source projects for "foss-cloud"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Cloud tools for web scraping and data extraction Icon
    Cloud tools for web scraping and data extraction

    Deploy pre-built tools that crawl websites, extract structured data, and feed your applications. Reliable web data without maintaining scrapers.

    Automate web data collection with cloud tools that handle anti-bot measures, browser rendering, and data transformation out of the box. Extract content from any website, push to vector databases for RAG workflows, or pipe directly into your apps via API. Schedule runs, set up webhooks, and connect to your existing stack. Free tier available, then scale as you need to.
    Explore 10,000+ tools
  • 1
    PyTorch/XLA

    PyTorch/XLA

    Enabling PyTorch on Google TPU

    PyTorch/XLA is a Python package that uses the XLA deep learning compiler to connect the PyTorch deep learning framework and Cloud TPUs. You can try it right now, for free, on a single Cloud TPU with Google Colab, and use it in production and on Cloud TPU Pods with Google Cloud. Take a look at one of our Colab notebooks to quickly try different PyTorch networks running on Cloud TPUs and learn how to use Cloud TPUs as PyTorch devices. We are also introducing new TPU VMs for more transparent and easier access to the TPU hardware. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    PyTorch

    PyTorch

    Open source machine learning framework

    PyTorch is a Python package that offers Tensor computation (like NumPy) with strong GPU acceleration and deep neural networks built on tape-based autograd system. This project allows for fast, flexible experimentation and efficient production. PyTorch consists of torch (Tensor library), torch.autograd (tape-based automatic differentiation library), torch.jit (a compilation stack [TorchScript]), torch.nn (neural networks library), torch.multiprocessing (Python multiprocessing), and...
    Downloads: 100 This Week
    Last Update:
    See Project
  • 3
    Jina

    Jina

    Build cross-modal and multimodal applications on the cloud

    Jina is a framework that empowers anyone to build cross-modal and multi-modal applications on the cloud. It uplifts a PoC into a production-ready service. Jina handles the infrastructure complexity, making advanced solution engineering and cloud-native technologies accessible to every developer. Build applications that deliver fresh insights from multiple data types such as text, image, audio, video, 3D mesh, PDF with Jina AI’s DocArray.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    OneFlow

    OneFlow

    OneFlow is a deep learning framework designed to be user-friendly

    ...Provides a variety of services from primary AI talent training to enterprise-level machine learning lifecycle integrated management (MLOps), including AI training and AI development, and supports three deployment modes of public cloud, private cloud and hybrid cloud.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Leverage AI to Automate Medical Coding Icon
    Leverage AI to Automate Medical Coding

    Medical Coding Solution

    As a healthcare provider, you should be paid promptly for the services you provide to patients. Slow, inefficient, and error-prone manual coding keeps you from the financial peace you deserve. XpertDox’s autonomous coding solution accelerates the revenue cycle so you can focus on providing great healthcare.
    Learn More
  • 5
    OpenVINO

    OpenVINO

    OpenVINO™ Toolkit repository

    ...Use models trained with popular frameworks like TensorFlow, PyTorch and more. Reduce resource demands and efficiently deploy on a range of Intel® platforms from edge to cloud. This open-source version includes several components: namely Model Optimizer, OpenVINO™ Runtime, Post-Training Optimization Tool, as well as CPU, GPU, MYRIAD, multi device and heterogeneous plugins to accelerate deep learning inferencing on Intel® CPUs and Intel® Processor Graphics. It supports pre-trained models from the Open Model Zoo, along with 100+ open source and public models in popular formats such as TensorFlow, ONNX, PaddlePaddle, MXNet, Caffe, Kaldi.
    Downloads: 17 This Week
    Last Update:
    See Project
  • 6
    Triton Inference Server

    Triton Inference Server

    The Triton Inference Server provides an optimized cloud

    ...Triton enables teams to deploy any AI model from multiple deep learning and machine learning frameworks, including TensorRT, TensorFlow, PyTorch, ONNX, OpenVINO, Python, RAPIDS FIL, and more. Triton supports inference across cloud, data center, edge, and embedded devices on NVIDIA GPUs, x86 and ARM CPU, or AWS Inferentia. Triton delivers optimized performance for many query types, including real-time, batched, ensembles, and audio/video streaming. Provides Backend API that allows adding custom backends and pre/post-processing operations. Model pipelines using Ensembling or Business Logic Scripting (BLS). ...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 7
    Synapse Machine Learning

    Synapse Machine Learning

    Simple and distributed Machine Learning

    SynapseML (previously MMLSpark) is an open source library to simplify the creation of scalable machine learning pipelines. SynapseML builds on Apache Spark and SparkML to enable new kinds of machine learning, analytics, and model deployment workflows. SynapseML adds many deep learning and data science tools to the Spark ecosystem, including seamless integration of Spark Machine Learning pipelines with the Open Neural Network Exchange (ONNX), LightGBM, The Cognitive Services, Vowpal Wabbit,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    DeepVariant

    DeepVariant

    DeepVariant is an analysis pipeline that uses a deep neural networks

    DeepVariant is an analysis pipeline that uses a deep neural network to call genetic variants from next-generation DNA sequencing data. DeepVariant is a deep learning-based variant caller that takes aligned reads (in BAM or CRAM format), produces pileup image tensors from them, classifies each tensor using a convolutional neural network, and finally reports the results in a standard VCF or gVCF file. DeepTrio is a deep learning-based trio variant caller built on top of DeepVariant. DeepTrio...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 9
    Determined

    Determined

    Determined, deep learning training platform

    ...Interpret your experiment results using the Determined UI and TensorBoard, and reproduce experiments with artifact tracking. Deploy your model using Determined's built-in model registry. Easily share on-premise or cloud GPUs with your team. Determined’s cluster scheduling offers first-class support for deep learning and seamless spot instance support. Check out examples of how you can use Determined to train popular deep learning models at scale.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Cloud data warehouse to power your data-driven innovation Icon
    Cloud data warehouse to power your data-driven innovation

    BigQuery is a serverless and cost-effective enterprise data warehouse that works across clouds and scales with your data.

    BigQuery Studio provides a single, unified interface for all data practitioners of various coding skills to simplify analytics workflows from data ingestion and preparation to data exploration and visualization to ML model creation and use. It also allows you to use simple SQL to access Vertex AI foundational models directly inside BigQuery for text processing tasks, such as sentiment analysis, entity extraction, and many more without having to deal with specialized models.
    Try for free
  • 10
    FATE

    FATE

    An industrial grade federated learning framework

    ...Supporting various federated learning scenarios, FATE now provides a host of federated learning algorithms, including logistic regression, tree-based algorithms, deep learning and transfer learning. FATE became open-source in February 2019. FATE TSC was established to lead FATE open-source community, with members from major domestic cloud computing and financial service enterprises. FedAI is a community that helps businesses and organizations build AI models effectively and collaboratively, by using data in accordance with user privacy protection, data security, data confidentiality and government regulations.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Rhino

    Rhino

    On-device Speech-to-Intent engine powered by deep learning

    ...Develop voice features with a few lines of code using intuitive and cross-platform SDKs. Deliver voice AI everywhere: on-device, mobile, web browsers, on-premise, or cloud. Measure adoption, learn, and iterate. Continuously re-design and re-train to optimize engagement. Building accurate, responsive, and private voice technology is difficult. We learned the hard way, so you don’t have to. Picovoice heavily invests in R&D to offer superior voice AI that surpasses even Big Tech in accuracy and efficiency. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 12
    DeepDetect

    DeepDetect

    Deep Learning API and Server in C++14 support for Caffe, PyTorch

    ...Training in a few hours and with small data thanks to 25+ pre-trained models. Full Open Source, with an ecosystem of tools (API clients, video, annotation, ...) Fast Server written in pure C++, a single codebase for Cloud, Desktop & Embedded.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    pipeless

    pipeless

    A computer vision framework to create and deploy apps in minutes

    ...Pipeless ships some of the most popular inference runtimes, such as the ONNX Runtime, allowing you to run inference with high performance on CPU or GPU out-of-the-box. You can deploy your Pipeless application with a single command to edge and IoT devices or the cloud.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Horovod

    Horovod

    Distributed training framework for TensorFlow, Keras, PyTorch, etc.

    ...With Horovod, an existing training script can be scaled up to run on hundreds of GPUs in just a few lines of Python code. Horovod can be installed on-premise or run out-of-the-box in cloud platforms, including AWS, Azure, and Databricks. Horovod can additionally run on top of Apache Spark, making it possible to unify data processing and model training into a single pipeline. Once Horovod has been configured, the same infrastructure can be used to train models with any framework, making it easy to switch between TensorFlow, PyTorch, MXNet, and future frameworks as machine learning tech stacks continue to evolve. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Deep learning time series forecasting

    Deep learning time series forecasting

    Deep learning PyTorch library for time series forecasting

    ...It provides all the latest state-of-the-art models (transformers, attention models, GRUs) and cutting-edge concepts with easy-to-understand interpretability metrics, cloud provider integration, and model serving capabilities. Flow Forecast was the first time series framework to feature support for transformer-based models and remains the only true end-to-end deep learning for time series forecasting framework. Currently, Task-TS from CoronaWhy primarily maintains this repository. Pull requests are welcome. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Apache MXNet (incubating)

    Apache MXNet (incubating)

    A flexible and efficient library for deep learning

    Apache MXNet is an open source deep learning framework designed for efficient and flexible research prototyping and production. It contains a dynamic dependency scheduler that automatically parallelizes both symbolic and imperative operations. On top of this is a graph optimization layer, overall making MXNet highly efficient yet still portable, lightweight and scalable.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Pytorch Points 3D

    Pytorch Points 3D

    Pytorch framework for doing deep learning on point clouds

    ...It heavily relies on Pytorch Geometric and Facebook Hydra library thanks for the great work! We aim to build a tool that can be used for benchmarking SOTA models, while also allowing practitioners to efficiently pursue research into point cloud analysis, with the end goal of building models which can be applied to real-life applications. Task driven implementation with dynamic model and dataset resolution from arguments. Core implementation of common components for point cloud deep learning - greatly simplifying the creation of new models. 4 Base Convolution base classes to simplify the implementation of new convolutions. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    TNN

    TNN

    Uniform deep learning inference framework for mobile

    ...At the same time, it refers to the high performance and good scalability characteristics of the industry's mainstream open source frameworks, and expands the support for X86 and NV GPUs. On the mobile phone, TNN has been used by many applications such as mobile QQ, weishi, and Pitu. As a basic acceleration framework for Tencent Cloud AI, TNN has provided acceleration support for the implementation of many businesses. Everyone is welcome to participate in the collaborative construction to promote the further improvement of the TNN inference framework.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    XZVoice

    XZVoice

    Free and open source text-to-speech software

    Text-to-speech software developed by Electron + vue + ElementUI + js. The high-fidelity and flexible configuration of speech synthesis products opens up the closed loop of human-computer interaction and enables applications to sound realistically. A variety of timbres are available, and functions such as adjusting speech rate, intonation, and volume are provided. Technically, multi-level rhythmic pauses are taken into account to achieve the purpose of natural synthesizing rhythm, and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    BerryNet

    BerryNet

    Deep learning gateway on Raspberry Pi and other edge devices

    ...It not only saves costs of data transmission and storage but also makes devices able to respond according to the events shown in the images or videos without connecting to the cloud. One of the applications of this intelligent gateway is to use the camera to monitor the place you care about. For example, Figure 3 shows the analyzed results from the camera hosted in the DT42 office. The frames were captured by the IP camera and they were submitted into the AI engine. The output from the AI engine will be shown in the dashboard.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21

    FastoCloud PRO

    IPTV/NVR/CCTV/Video cloud https://fastocloud.com

    IPTV/Video cloud Features: Cross-platform (Linux, MacOSX, FreeBSD, Raspbian/Armbian) GPU/CPU Encode/Decode/Post Processing Stream statistics CCTV Adaptive hls streams Load balancing Temporary urls HLS push EPG scanning Subtitles to text conversions AD insertion Logo overlay Video effects Relays Timeshifts Catchups Playlists Restream/Transcode from online streaming services like Youtube, Twitch Mozaic Many Outputs Physical Inputs Streaming Protocols File Formats Presets Vods/Series server-side support Pay per view channels Channels on demand HTTP Live Streaming (HLS) server-side support Public API, client server communication via JSON RPC Protocol gzip compression Deep learning video analysis Supported deep learning frameworks: Tensorflow NCSDK Caffe ML Hardware:
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    NLP Best Practices

    NLP Best Practices

    Natural Language Processing Best Practices & Examples

    In recent years, natural language processing (NLP) has seen quick growth in quality and usability, and this has helped to drive business adoption of artificial intelligence (AI) solutions. In the last few years, researchers have been applying newer deep learning methods to NLP. Data scientists started moving from traditional methods to state-of-the-art (SOTA) deep neural network (DNN) algorithms which use language models pretrained on large text corpora. This repository contains examples and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    DIGITS

    DIGITS

    Deep Learning GPU training system

    ...DIGITS is completely interactive so that data scientists can focus on designing and training networks rather than programming and debugging. DIGITS is available as a free download to the members of the NVIDIA Developer Program. DIGITS is available on NVIDIA GPU Cloud (NGC) as an optimized container for on-demand usage. Sign-up for an NGC account and get started with DIGITS in minutes.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 24
    Seldon Server

    Seldon Server

    Machine learning platform and recommendation engine on Kubernetes

    ...It provides an open-source data science stack that runs within a Kubernetes Cluster. You can use Seldon to deploy machine learning and deep learning models into production on-premise or in the cloud (e.g. GCP, AWS, Azure).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Caffe2

    Caffe2

    Caffe2 is a lightweight, modular, and scalable deep learning framework

    ...Caffe2 is a deep learning framework that provides an easy and straightforward way for you to experiment with deep learning and leverage community contributions of new models and algorithms. You can bring your creations to scale using the power of GPUs in the cloud or to the masses on mobile with Caffe2’s cross-platform libraries. Modularity and being designed for both scale and mobile deployments are the high-level answers to the first question. In many ways Caffe2 is an un-framework because it is so flexible and modular. The original Caffe framework was useful for large-scale product use cases, especially with its unparalleled performance and well tested C++ codebase. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next