Showing 2 open source projects for "stable-diffusion-webui"

View related business solutions
  • Context for your AI agents Icon
    Context for your AI agents

    Crawl websites, sync to vector databases, and power RAG applications. Pre-built integrations for LLM pipelines and AI assistants.

    Build data pipelines that feed your AI models and agents without managing infrastructure. Crawl any website, transform content, and push directly to your preferred vector store. Use 10,000+ tools for RAG applications, AI assistants, and real-time knowledge bases. Monitor site changes, trigger workflows on new data, and keep your AIs fed with fresh, structured information. Cloud-native, API-first, and free to start until you need to scale.
    Try for free
  • Turn more customers into advocates. Icon
    Turn more customers into advocates.

    Fight skyrocketing paid media costs by turning your customers into a primary vehicle for acquisition, awareness, and activation with Extole.

    The platform's advanced capabilities ensure companies get the most out of their referral programs. Leverage custom events, profiles, and attributes to enable dynamic, audience-specific referral experiences. Use first-party data to tailor customer segment messaging, rewards, and engagement strategies. Use our flexible APIs to build management capabilities and consumer experiences–headlessly or hybrid. We have all the tools you need to build scalable, secure, and high-performing referral programs.
    Learn More
  • 1
    MLPACK is a C++ machine learning library with emphasis on scalability, speed, and ease-of-use. Its aim is to make machine learning possible for novice users by means of a simple, consistent API, while simultaneously exploiting C++ language features to provide maximum performance and flexibility for expert users. * More info + downloads: https://mlpack.org * Git repo: https://github.com/mlpack/mlpack
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Consistent Depth

    Consistent Depth

    We estimate dense, flicker-free, geometrically consistent depth

    ...The system builds upon traditional structure-from-motion (SfM) techniques to provide geometric constraints while integrating a convolutional neural network trained for single-image depth estimation. During inference, the model fine-tunes itself to align with the geometric constraints of a specific input video, ensuring stable and realistic depth maps even in less-constrained regions. This approach achieves improved geometric consistency and visual stability compared to prior monocular reconstruction methods. The project can process challenging hand-held video footage, including those with moderate dynamic motion, making it practical for real-world usage.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next