Showing 29 open source projects for "video-making"

View related business solutions
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • Dun and Bradstreet Connect simplifies the complex burden of data management Icon
    Dun and Bradstreet Connect simplifies the complex burden of data management

    Our self-service data management platform enables your organization to gain a complete and accurate view of your accounts and contacts.

    The amount, speed, and types of data created in today’s world can be overwhelming. With D&B Connect, you can instantly benchmark, enrich, and monitor your data against the Dun & Bradstreet Data Cloud to help ensure your systems of record have trusted data to fuel growth.
    Learn More
  • 1
    Video-subtitle-extractor

    Video-subtitle-extractor

    A GUI tool for extracting hard-coded subtitle (hardsub) from videos

    Video hard subtitle extraction, generate srt file. There is no need to apply for a third-party API, and text recognition can be implemented locally. A deep learning-based video subtitle extraction framework, including subtitle region detection and subtitle content extraction. A GUI tool for extracting hard-coded subtitles (hardsub) from videos and generating srt files.
    Downloads: 65 This Week
    Last Update:
    See Project
  • 2
    Make-A-Video - Pytorch (wip)

    Make-A-Video - Pytorch (wip)

    Implementation of Make-A-Video, new SOTA text to video generator

    Implementation of Make-A-Video, new SOTA text to video generator from Meta AI, in Pytorch. They combine pseudo-3d convolutions (axial convolutions) and temporal attention and show much better temporal fusion. The pseudo-3d convolutions isn't a new concept. It has been explored before in other contexts, say for protein contact prediction as "dimensional hybrid residual networks".
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    vJEPA-2

    vJEPA-2

    PyTorch code and models for VJEPA2 self-supervised learning from video

    VJEPA2 is a next-generation self-supervised learning framework for video that extends the “predict in representation space” idea from i-JEPA to the temporal domain. Instead of reconstructing pixels, it predicts the missing high-level embeddings of masked space-time regions using a context encoder and a slowly updated target encoder. This objective encourages the model to learn semantics, motion, and long-range structure without the shortcuts that pixel-level losses can invite. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Jina

    Jina

    Build cross-modal and multimodal applications on the cloud

    Jina is a framework that empowers anyone to build cross-modal and multi-modal applications on the cloud. It uplifts a PoC into a production-ready service. Jina handles the infrastructure complexity, making advanced solution engineering and cloud-native technologies accessible to every developer. Build applications that deliver fresh insights from multiple data types such as text, image, audio, video, 3D mesh, PDF with Jina AI’s DocArray. Polyglot gateway that supports gRPC, Websockets, HTTP, GraphQL protocols with TLS. Intuitive design pattern for high-performance microservices. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Pest Control Management Software Icon
    Pest Control Management Software

    Pocomos is a cloud-based field service solution that caters to businesses

    Built for the pest control industry, but also works great for Mosquito Control, Bin Cleaning, Window Washing, Solar Panel Cleaning, and other Home Service Businesses in need of an easy-to-use software that helps you simplify routing, scheduling, communications, payment processing, truck tracking, time tracking, and reporting.
    Learn More
  • 5
    PyTorch3D

    PyTorch3D

    PyTorch3D is FAIR's library of reusable components for deep learning

    ...It’s designed to make it easy to build and train neural networks that work directly with 3D data such as meshes, point clouds, and implicit surfaces. The library provides fast GPU-accelerated implementations of rendering pipelines, transformations, rasterization, and lighting—making it possible to compute gradients through full 3D rendering processes. Researchers use it for tasks like shape generation, reconstruction, view synthesis, and visual reasoning. PyTorch3D also includes utilities for loading, transforming, and sampling 3D assets, so models can be trained end-to-end from 2D supervision or partial data. ...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 6
    DocArray

    DocArray

    The data structure for multimodal data

    DocArray is a library for nested, unstructured, multimodal data in transit, including text, image, audio, video, 3D mesh, etc. It allows deep-learning engineers to efficiently process, embed, search, recommend, store, and transfer multimodal data with a Pythonic API. Door to multimodal world: super-expressive data structure for representing complicated/mixed/nested text, image, video, audio, 3D mesh data. The foundation data structure of Jina, CLIP-as-service, DALL·E Flow, DiscoArt etc. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Open Model Zoo

    Open Model Zoo

    Pre-trained Deep Learning models and demos

    ...In addition to model files, Open Model Zoo provides demo applications that show realistic usage patterns and help developers quickly prototype and understand inference pipelines in C++, Python, or via the OpenCV Graph API. Tools in the repository also help automate model downloads and other tasks, making it easier to incorporate these models into production systems or custom solutions.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 8
    Triton Inference Server

    Triton Inference Server

    The Triton Inference Server provides an optimized cloud

    ...Triton supports inference across cloud, data center, edge, and embedded devices on NVIDIA GPUs, x86 and ARM CPU, or AWS Inferentia. Triton delivers optimized performance for many query types, including real-time, batched, ensembles, and audio/video streaming. Provides Backend API that allows adding custom backends and pre/post-processing operations. Model pipelines using Ensembling or Business Logic Scripting (BLS). HTTP/REST and GRPC inference protocols based on the community-developed KServe protocol. A C API and Java API allow Triton to link directly into your application for edge and other in-process use cases.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 9
    DeepSeed

    DeepSeed

    Deep learning optimization library making distributed training easy

    DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective. DeepSpeed delivers extreme-scale model training for everyone, from data scientists training on massive supercomputers to those training on low-end clusters or even on a single GPU. Using current generation of GPU clusters with hundreds of devices, 3D parallelism of DeepSpeed can efficiently train deep learning models with trillions of parameters. With just a single GPU,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • All-in-one security tool helps you prevent ransomware and breaches. Icon
    All-in-one security tool helps you prevent ransomware and breaches.

    SIEM + Detection and Response for IT Teams

    Blumira’s detection and response platform enables faster resolution of threats to help you stop ransomware attacks and prevent data breaches. We surface real threats, providing meaningful findings so you know what to prioritize. With our 3-step rapid response, you can automatically block known threats, use our playbooks for easy remediation, or contact our security team for additional guidance. Our responsive security team helps with onboarding, triage and ongoing consultations to continuously help your organization improve your security coverage.
    Learn More
  • 10
    Colossal-AI

    Colossal-AI

    Making large AI models cheaper, faster and more accessible

    The Transformer architecture has improved the performance of deep learning models in domains such as Computer Vision and Natural Language Processing. Together with better performance come larger model sizes. This imposes challenges to the memory wall of the current accelerator hardware such as GPU. It is never ideal to train large models such as Vision Transformer, BERT, and GPT on a single GPU or a single machine. There is an urgent demand to train models in a distributed environment....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    JEPA

    JEPA

    PyTorch code and models for V-JEPA self-supervised learning from video

    JEPA (Joint-Embedding Predictive Architecture) captures the idea of predicting missing high-level representations rather than reconstructing pixels, aiming for robust, scalable self-supervised learning. A context encoder ingests visible regions and predicts target embeddings for masked regions produced by a separate target encoder, avoiding low-level reconstruction losses that can overfit to texture. This makes learning focus on semantics and structure, yielding features that transfer well...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 12
    Audiomentations

    Audiomentations

    A Python library for audio data augmentation

    ...Can be integrated in training pipelines in e.g. Tensorflow/Keras or Pytorch. Has helped people get world-class results in Kaggle competitions. Is used by companies making next-generation audio products. Mix in another sound, e.g. a background noise. Useful if your original sound is clean and you want to simulate an environment where background noise is present. A folder of (background noise) sounds to be mixed in must be specified. These sounds should ideally be at least as long as the input sounds to be transformed. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    DeepSpeed MII

    DeepSpeed MII

    MII makes low-latency and high-throughput inference possible

    ...While open-sourcing has democratized access to AI capabilities, their application is still restricted by two critical factors: inference latency and cost. DeepSpeed-MII is a new open-source python library from DeepSpeed, aimed towards making low-latency, low-cost inference of powerful models not only feasible but also easily accessible. MII offers access to the highly optimized implementation of thousands of widely used DL models. MII-supported models achieve significantly lower latency and cost compared to their original implementation.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    OpenCV

    OpenCV

    Open Source Computer Vision Library

    The Open Source Computer Vision Library has >2500 algorithms, extensive documentation and sample code for real-time computer vision. It works on Windows, Linux, Mac OS X, Android, iOS in your browser through JavaScript. Languages: C++, Python, Julia, Javascript Homepage: https://opencv.org Q&A forum: https://forum.opencv.org/ Documentation: https://docs.opencv.org Source code: https://github.com/opencv Please pay special attention to our tutorials!...
    Leader badge
    Downloads: 3,164 This Week
    Last Update:
    See Project
  • 15
    pipeless

    pipeless

    A computer vision framework to create and deploy apps in minutes

    ...Pipeless is inspired by modern serverless technologies. It provides the development experience of serverless frameworks applied to computer vision. You provide some functions that are executed for new video frames and Pipeless takes care of everything else. You can easily use industry-standard models, such as YOLO, or load your custom model in one of the supported inference runtimes. Pipeless ships some of the most popular inference runtimes, such as the ONNX Runtime, allowing you to run inference with high performance on CPU or GPU out-of-the-box. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Horovod

    Horovod

    Distributed training framework for TensorFlow, Keras, PyTorch, etc.

    ...Horovod can be installed on-premise or run out-of-the-box in cloud platforms, including AWS, Azure, and Databricks. Horovod can additionally run on top of Apache Spark, making it possible to unify data processing and model training into a single pipeline. Once Horovod has been configured, the same infrastructure can be used to train models with any framework, making it easy to switch between TensorFlow, PyTorch, MXNet, and future frameworks as machine learning tech stacks continue to evolve. Start scaling your model training with just a few lines of Python code. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Apache MXNet (incubating)

    Apache MXNet (incubating)

    A flexible and efficient library for deep learning

    ...It contains a dynamic dependency scheduler that automatically parallelizes both symbolic and imperative operations. On top of this is a graph optimization layer, overall making MXNet highly efficient yet still portable, lightweight and scalable.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Face Mask Detection

    Face Mask Detection

    Face Mask Detection system based on computer vision and deep learning

    ...Our face mask detector doesn't use any morphed masked images dataset and the model is accurate. Owing to the use of MobileNetV2 architecture, it is computationally efficient, thus making it easier to deploy the model to embedded systems (Raspberry Pi, Google Coral, etc.).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Gluon CV Toolkit

    Gluon CV Toolkit

    Gluon CV Toolkit

    ...It features training scripts that reproduce SOTA results reported in latest papers, a large set of pre-trained models, carefully designed APIs and easy-to-understand implementations and community support. From fundamental image classification, object detection, semantic segmentation and pose estimation, to instance segmentation and video action recognition. The model zoo is the one-stop shopping center for many models you are expecting. GluonCV embraces a flexible development pattern while is super easy to optimize and deploy without retaining a heavyweight deep learning framework.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Consistent Depth

    Consistent Depth

    We estimate dense, flicker-free, geometrically consistent depth

    ...This approach achieves improved geometric consistency and visual stability compared to prior monocular reconstruction methods. The project can process challenging hand-held video footage, including those with moderate dynamic motion, making it practical for real-world usage.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Tensor2Tensor

    Tensor2Tensor

    Library of deep learning models and datasets

    ...In the research community, one can find code open-sourced by the authors to help in replicating their results and further advancing deep learning. However, most of these DL systems use unique setups that require significant engineering effort and may only work for a specific problem or architecture, making it hard to run new experiments and compare the results. Tensor2Tensor, or T2T for short, is a library of deep learning models and datasets designed to make deep learning more accessible and accelerate ML research. T2T was developed by researchers and engineers in the Google Brain team and a community of users. It is now deprecated, we keep it running and welcome bug-fixes, but encourage users to use the successor library Trax.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    End-to-End Negotiator

    End-to-End Negotiator

    Deal or No Deal? End-to-End Learning for Negotiation Dialogues

    End-to-End Negotiator is a PyTorch-based research framework developed by Facebook AI Research to train neural agents capable of conducting strategic negotiations in natural language. The project implements the models presented in two key papers: “Deal or No Deal? End-to-End Learning for Negotiation Dialogues” and “Hierarchical Text Generation and Planning for Strategic Dialogue”. It enables agents to plan, reason, and communicate effectively to maximize outcomes in multi-turn negotiations...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    DeepLearning

    DeepLearning

    Deep Learning (Flower Book) mathematical derivation

    ...At the same time, it also introduces deep learning techniques used by practitioners in the industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling and practical methods, and investigates topics such as natural language processing, Applications in speech recognition, computer vision, online recommender systems, bioinformatics, and video games. Finally, the Deep Learning book provides research directions covering theoretical topics including linear factor models, autoencoders, representation learning, structured probabilistic models, etc.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 24

    FastoCloud PRO

    IPTV/NVR/CCTV/Video cloud https://fastocloud.com

    IPTV/Video cloud Features: Cross-platform (Linux, MacOSX, FreeBSD, Raspbian/Armbian) GPU/CPU Encode/Decode/Post Processing Stream statistics CCTV Adaptive hls streams Load balancing Temporary urls HLS push EPG scanning Subtitles to text conversions AD insertion Logo overlay Video effects Relays Timeshifts Catchups Playlists Restream/Transcode from online streaming services like Youtube, Twitch Mozaic Many Outputs Physical Inputs Streaming Protocols File Formats Presets Vods/Series server-side support Pay per view channels Channels on demand HTTP Live Streaming (HLS) server-side support Public API, client server communication via JSON RPC Protocol gzip compression Deep learning video analysis Supported deep learning frameworks: Tensorflow NCSDK Caffe ML Hardware:
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Torchreid

    Torchreid

    Deep learning person re-identification in PyTorch

    Torchreid is a library for deep-learning person re-identification, written in PyTorch and developed for our ICCV’19 project, Omni-Scale Feature Learning for Person Re-Identification. In "deep-person-reid/scripts/", we provide a unified interface to train and test a model. See "scripts/main.py" and "scripts/default_config.py" for more details. The folder "configs/" contains some predefined configs which you can use as a starting point. The code will automatically (download and) load the...
    Downloads: 2 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • Next