• Find Hidden Risks in Windows Task Scheduler Icon
    Find Hidden Risks in Windows Task Scheduler

    Free diagnostic script reveals configuration issues, error patterns, and security risks. Instant HTML report.

    Windows Task Scheduler might be hiding critical failures. Download the free JAMS diagnostic tool to uncover problems before they impact production—get a color-coded risk report with clear remediation steps in minutes.
    Download Free Tool
  • AI-generated apps that pass security review Icon
    AI-generated apps that pass security review

    Stop waiting on engineering. Build production-ready internal tools with AI—on your company data, in your cloud.

    Retool lets you generate dashboards, admin panels, and workflows directly on your data. Type something like “Build me a revenue dashboard on my Stripe data” and get a working app with security, permissions, and compliance built in from day one. Whether on our cloud or self-hosted, create the internal software your team needs without compromising enterprise standards or control.
    Try Retool free
  • 1
    Video-subtitle-extractor

    Video-subtitle-extractor

    A GUI tool for extracting hard-coded subtitle (hardsub) from videos

    ...A deep learning-based video subtitle extraction framework, including subtitle region detection and subtitle content extraction. A GUI tool for extracting hard-coded subtitles (hardsub) from videos and generating srt files. Use local OCR recognition, no need to set up and call any API, and do not need to access online OCR services such as Baidu and Ali to complete text recognition locally. Support GPU acceleration, after GPU acceleration, you can get higher accuracy and faster extraction speed. (CLI version) No need for users to manually set the subtitle area, the project automatically detects the subtitle area through the text detection model. ...
    Downloads: 55 This Week
    Last Update:
    See Project
  • 2
    Recommenders

    Recommenders

    Best practices on recommendation systems

    ...Implementations of several state-of-the-art algorithms are included for self-study and customization in your own applications. Please see the setup guide for more details on setting up your machine locally, on a data science virtual machine (DSVM) or on Azure Databricks. Independent or incubating algorithms and utilities are candidates for the contrib folder. This will house contributions which may not easily fit into the core repository or need time to refactor or mature the code and add necessary tests.
    Downloads: 18 This Week
    Last Update:
    See Project
  • 3
    SageMaker Hugging Face Inference Toolkit

    SageMaker Hugging Face Inference Toolkit

    Library for serving Transformers models on Amazon SageMaker

    ...This library provides default pre-processing, predict and postprocessing for certain Transformers models and tasks. It utilizes the SageMaker Inference Toolkit for starting up the model server, which is responsible for handling inference requests. For the Dockerfiles used for building SageMaker Hugging Face Containers, see AWS Deep Learning Containers. The SageMaker Hugging Face Inference Toolkit implements various additional environment variables to simplify your deployment experience. The Hugging Face Inference Toolkit allows user to override the default methods of the HuggingFaceHandlerService. ...
    Downloads: 7 This Week
    Last Update:
    See Project
  • 4
    PaddleX

    PaddleX

    PaddlePaddle End-to-End Development Toolkit

    PaddleX is a deep learning full-process development tool based on the core framework, development kit, and tool components of Paddle. It has three characteristics opening up the whole process, integrating industrial practice, and being easy to use and integrate. Image classification and labeling is the most basic and simplest labeling task. Users only need to put pictures belonging to the same category in the same folder. When the model is trained, we need to divide the training set, the validation set and the test set. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 5
    DeepSeed

    DeepSeed

    Deep learning optimization library making distributed training easy

    ...With just a single GPU, ZeRO-Offload of DeepSpeed can train models with over 10B parameters, 10x bigger than the state of arts, democratizing multi-billion-parameter model training such that many deep learning scientists can explore bigger and better models. Sparse attention of DeepSpeed powers an order-of-magnitude longer input sequence and obtains up to 6x faster execution comparing with dense transformers.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 6
    Thinc

    Thinc

    A refreshing functional take on deep learning

    ...Develop faster and catch bugs sooner with sophisticated type checking. Trying to pass a 1-dimensional array into a model that expects two dimensions? That’s a type error. Your editor can pick it up as the code leaves your fingers.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    tsai

    tsai

    Time series Timeseries Deep Learning Machine Learning Pytorch fastai

    ...This is the type of output you would get in a classification task. New tutorial notebook on how to train your model with larger-than-memory datasets in less time achieving up to 100% GPU usage! See our new tutorial notebook on how to track your experiments with Weights & Biases
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    NeuralProphet

    NeuralProphet

    A simple forecasting package

    ...You can find the datasets used in the tutorials, including data preprocessing examples, in our neuralprophet-data repository. The documentation page may not we entirely up to date. Docstrings should be reliable, please refer to those when in doubt. We are working on an improved documentation. We appreciate any help to improve and update the docs. Lagged regressors (measured features, e.g temperature sensor). Future regressors (in advance known features, e.g. temperature forecast). Country holidays & recurring special events. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    DeepPavlov

    DeepPavlov

    A library for deep learning end-to-end dialog systems and chatbots

    DeepPavlov makes it easy for beginners and experts to create dialogue systems. The best place to start is with user-friendly tutorials. They provide quick and convenient introduction on how to use DeepPavlov with complete, end-to-end examples. No installation needed. Guides explain the concepts and components of DeepPavlov. Follow step-by-step instructions to install, configure and extend DeepPavlov framework for your use case. DeepPavlov is an open-source framework for chatbots and virtual...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 10
    Lightning-Hydra-Template

    Lightning-Hydra-Template

    PyTorch Lightning + Hydra. A very user-friendly template

    Convenient all-in-one technology stack for deep learning prototyping - allows you to rapidly iterate over new models, datasets and tasks on different hardware accelerators like CPUs, multi-GPUs or TPUs. A collection of best practices for efficient workflow and reproducibility. Thoroughly commented - you can use this repo as a reference and educational resource. Not fitted for data engineering - the template configuration setup is not designed for building data processing pipelines that...
    Downloads: 10 This Week
    Last Update:
    See Project
  • 11
    Horovod

    Horovod

    Distributed training framework for TensorFlow, Keras, PyTorch, etc.

    ...Start scaling your model training with just a few lines of Python code. Scale up to hundreds of GPUs with upwards of 90% scaling efficiency.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    fastMRI

    fastMRI

    A large open dataset + tools to speed up MRI scans using ML

    fastMRI is a large-scale collaborative research project by Facebook AI Research (FAIR) and NYU Langone Health that explores how deep learning can accelerate magnetic resonance imaging (MRI) acquisition without compromising image quality. By enabling reconstruction of high-fidelity MR images from significantly fewer measurements, fastMRI aims to make MRI scanning faster, cheaper, and more accessible in clinical settings. The repository provides an open-source PyTorch framework with data...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    SageMaker MXNet Inference Toolkit

    SageMaker MXNet Inference Toolkit

    Toolkit for allowing inference and serving with MXNet in SageMaker

    SageMaker MXNet Inference Toolkit is an open-source library for serving MXNet models on Amazon SageMaker. This library provides default pre-processing, predict and postprocessing for certain MXNet model types and utilizes the SageMaker Inference Toolkit for starting up the model server, which is responsible for handling inference requests. AWS Deep Learning Containers (DLCs) are a set of Docker images for training and serving models in TensorFlow, TensorFlow 2, PyTorch, and MXNet. Deep Learning Containers provide optimized environments with TensorFlow and MXNet, Nvidia CUDA (for GPU instances), and Intel MKL (for CPU instances) libraries and are available in the Amazon Elastic Container Registry (Amazon ECR). ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Apache MXNet (incubating)

    Apache MXNet (incubating)

    A flexible and efficient library for deep learning

    Apache MXNet is an open source deep learning framework designed for efficient and flexible research prototyping and production. It contains a dynamic dependency scheduler that automatically parallelizes both symbolic and imperative operations. On top of this is a graph optimization layer, overall making MXNet highly efficient yet still portable, lightweight and scalable.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Machine Learning PyTorch Scikit-Learn

    Machine Learning PyTorch Scikit-Learn

    Code Repository for Machine Learning with PyTorch and Scikit-Learn

    Initially, this project started as the 4th edition of Python Machine Learning. However, after putting so much passion and hard work into the changes and new topics, we thought it deserved a new title. So, what’s new? There are many contents and additions, including the switch from TensorFlow to PyTorch, new chapters on graph neural networks and transformers, a new section on gradient boosting, and many more that I will detail in a separate blog post. For those who are interested in knowing...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 16
    Detectron2

    Detectron2

    Next-generation platform for object detection and segmentation

    Detectron2 is Facebook AI Research's next generation software system that implements state-of-the-art object detection algorithms. It is a ground-up rewrite of the previous version, Detectron, and it originates from maskrcnn-benchmark. It is powered by the PyTorch deep learning framework. Includes more features such as panoptic segmentation, Densepose, Cascade R-CNN, rotated bounding boxes, PointRend, DeepLab, etc. Can be used as a library to support different projects on top of it. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Pytorch Points 3D

    Pytorch Points 3D

    Pytorch framework for doing deep learning on point clouds

    Torch Points 3D is a framework for developing and testing common deep learning models to solve tasks related to unstructured 3D spatial data i.e. Point Clouds. The framework currently integrates some of the best-published architectures and it integrates the most common public datasets for ease of reproducibility. It heavily relies on Pytorch Geometric and Facebook Hydra library thanks for the great work! We aim to build a tool that can be used for benchmarking SOTA models, while also...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    TFLearn

    TFLearn

    Deep learning library featuring a higher-level API for TensorFlow

    TFlearn is a modular and transparent deep learning library built on top of Tensorflow. It was designed to provide a higher-level API to TensorFlow in order to facilitate and speed up experimentations while remaining fully transparent and compatible with it. Easy-to-use and understand high-level API for implementing deep neural networks, with tutorials and examples. Fast prototyping through highly modular built-in neural network layers, regularizers, optimizers, and metrics. Full transparency over Tensorflow. All functions are built over tensors and can be used independently of TFLearn. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    SageMaker MXNet Training Toolkit

    SageMaker MXNet Training Toolkit

    Toolkit for running MXNet training scripts on SageMaker

    SageMaker MXNet Training Toolkit is an open-source library for using MXNet to train models on Amazon SageMaker. For inference, see SageMaker MXNet Inference Toolkit. For the Dockerfiles used for building SageMaker MXNet Containers, see AWS Deep Learning Containers. For information on running MXNet jobs on Amazon SageMaker, please refer to the SageMaker Python SDK documentation. With the SDK, you can train and deploy models using popular deep learning frameworks Apache MXNet and TensorFlow....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Spinning Up in Deep RL

    Spinning Up in Deep RL

    Educational resource to help anyone learn deep reinforcement learning

    ...At OpenAI, we believe that deep learning generally, and deep reinforcement learning specifically, will play central roles in the development of powerful AI technology. To ensure that AI is safe, we have to come up with safety strategies and algorithms that are compatible with this paradigm. As a result, we encourage everyone who asks this question to study these fields. However, while there are many resources to help people quickly ramp up on deep learning, deep reinforcement learning is more challenging to break into.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 21
    deep-q-learning

    deep-q-learning

    Minimal Deep Q Learning (DQN & DDQN) implementations in Keras

    The deep-q-learning repository authored by keon provides a Python-based implementation of the Deep Q-Learning algorithm — a cornerstone method in reinforcement learning. It implements the core logic needed to train an agent using Q-learning with neural networks (i.e. approximating Q-values via deep nets), setting up environment interaction loops, experience replay, network updates, and policy behavior. For learners and researchers interested in reinforcement learning, this repo offers a concrete, runnable example bridging theory and practice: you can execute the code, play with hyperparameters, observe convergence behavior, and see how deep Q-learning learns policies over time in standard environments. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22

    Face Recognition

    World's simplest facial recognition api for Python & the command line

    Face Recognition is the world's simplest face recognition library. It allows you to recognize and manipulate faces from Python or from the command line using dlib's (a C++ toolkit containing machine learning algorithms and tools) state-of-the-art face recognition built with deep learning. Face Recognition is highly accurate and is able to do a number of things. It can find faces in pictures, manipulate facial features in pictures, identify faces in pictures, and do face recognition on a...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 23
    DIGITS

    DIGITS

    Deep Learning GPU training system

    ...DIGITS is available as a free download to the members of the NVIDIA Developer Program. DIGITS is available on NVIDIA GPU Cloud (NGC) as an optimized container for on-demand usage. Sign-up for an NGC account and get started with DIGITS in minutes.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Deepo

    Deepo

    Set up deep learning environment in a single command line

    Deepo is a series of Docker images that allows you to quickly set up your deep learning research environment, supports almost all commonly used deep learning frameworks, supports GPU acceleration (CUDA and cuDNN included), also works in CPU-only mode, and works on Linux (CPU version/GPU version), Windows (CPU version) and OS X (CPU version). Their Dockerfile generator that allows you to customize your own environment with Lego-like modules, and automatically resolves the dependencies for you. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next