• Build AI Apps with Gemini 3 on Vertex AI Icon
    Build AI Apps with Gemini 3 on Vertex AI

    Access Google’s most capable multimodal models. Train, test, and deploy AI with 200+ foundation models on one platform.

    Vertex AI gives developers access to Gemini 3—Google’s most advanced reasoning and coding model—plus 200+ foundation models including Claude, Llama, and Gemma. Build generative AI apps with Vertex AI Studio, customize with fine-tuning, and deploy to production with enterprise-grade MLOps. New customers get $300 in free credits.
    Try Vertex AI Free
  • Cut Cloud Costs with Google Compute Engine Icon
    Cut Cloud Costs with Google Compute Engine

    Save up to 91% with Spot VMs and get automatic sustained-use discounts. One free VM per month, plus $300 in credits.

    Save on compute costs with Compute Engine. Reduce your batch jobs and workload bill 60-91% with Spot VMs. Compute Engine's committed use offers customers up to 70% savings through sustained use discounts. Plus, you get one free e2-micro VM monthly and $300 credit to start.
    Try Compute Engine
  • 1
    Pyro

    Pyro

    Deep universal probabilistic programming with Python and PyTorch

    Pyro is a flexible, universal probabilistic programming language (PPL) built on PyTorch. It allows for expressive deep probabilistic modeling, combining the best of modern deep learning and Bayesian modeling. Pyro is centered on four main principles: Universal, Scalable, Minimal and Flexible. Pyro is universal in that it can represent any computable probability distribution. It scales easily to large datasets with minimal overhead, and has a small yet powerful core of composable abstractions that make it both agile and maintainable. Lastly, Pyro gives you the flexibility of automation when you want it, and control when you need it.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 2
    fastai

    fastai

    Deep learning library

    fastai is a deep learning library which provides practitioners with high-level components that can quickly and easily provide state-of-the-art results in standard deep learning domains, and provides researchers with low-level components that can be mixed and matched to build new approaches. It aims to do both things without substantial compromises in ease of use, flexibility, or performance. This is possible thanks to a carefully layered architecture, which expresses common underlying...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 3
    DeepSpeed

    DeepSpeed

    Deep learning optimization library: makes distributed training easy

    ...Train/Inference dense or sparse models with billions or trillions of parameters 2. Achieve excellent system throughput and efficiently scale to thousands of GPUs 3. Train/Inference on resource constrained GPU systems 4. Achieve unprecedented low latency and high throughput for inference 5. Achieve extreme compression for an unparalleled inference latency and model size reduction with low costs DeepSpeed offers a confluence of system innovations, that has made large scale DL training effective, and efficient, greatly improved ease of use, and redefined the DL training landscape in terms of scale that is possible. ...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 4
    Lightning-Hydra-Template

    Lightning-Hydra-Template

    PyTorch Lightning + Hydra. A very user-friendly template

    Convenient all-in-one technology stack for deep learning prototyping - allows you to rapidly iterate over new models, datasets and tasks on different hardware accelerators like CPUs, multi-GPUs or TPUs. A collection of best practices for efficient workflow and reproducibility. Thoroughly commented - you can use this repo as a reference and educational resource. Not fitted for data engineering - the template configuration setup is not designed for building data processing pipelines that...
    Downloads: 0 This Week
    Last Update:
    See Project
  • AI-generated apps that pass security review Icon
    AI-generated apps that pass security review

    Stop waiting on engineering. Build production-ready internal tools with AI—on your company data, in your cloud.

    Retool lets you generate dashboards, admin panels, and workflows directly on your data. Type something like “Build me a revenue dashboard on my Stripe data” and get a working app with security, permissions, and compliance built in from day one. Whether on our cloud or self-hosted, create the internal software your team needs without compromising enterprise standards or control.
    Try Retool free
  • 5
    AI-Agent-Host

    AI-Agent-Host

    The AI Agent Host is a module-based development environment.

    The AI Agent Host integrates several advanced technologies and offers a unique combination of features for the development of language model-driven applications. The AI Agent Host is a module-based environment designed to facilitate rapid experimentation and testing. It includes a docker-compose configuration with QuestDB, Grafana, Code-Server and Nginx. The AI Agent Host provides a seamless interface for managing and querying data, visualizing results, and coding in real-time. The AI...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    LayoutParser

    LayoutParser

    A Unified Toolkit for Deep Learning Based Document Image Analysis

    With the help of state-of-the-art deep learning models, Layout Parser enables extracting complicated document structures using only several lines of code. This method is also more robust and generalizable as no sophisticated rules are involved in this process. A complete instruction for installing the main Layout Parser library and auxiliary components. Learn how to load DL Layout models and use them for layout detection. The full list of layout models currently available in Layout Parser....
    Downloads: 3 This Week
    Last Update:
    See Project
  • 7
    Pytorch Points 3D

    Pytorch Points 3D

    Pytorch framework for doing deep learning on point clouds

    ...Task driven implementation with dynamic model and dataset resolution from arguments. Core implementation of common components for point cloud deep learning - greatly simplifying the creation of new models. 4 Base Convolution base classes to simplify the implementation of new convolutions. Each base class supports a different data format.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    jieba

    jieba

    Stuttering Chinese word segmentation

    "Jaba" Chinese word segmentation, do the best Python Chinese word segmentation component. Four word segmentation modes are supported. Precise mode, which tries to cut the sentence most precisely, suitable for text analysis. Full mode, scans all the words that can be formed into words in the sentence, the speed is very fast, but the ambiguity cannot be resolved. The search engine mode, on the basis of the precise mode, divides the long words again to improve the recall rate, which is suitable for word segmentation in search engines. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 9
    The Google Cloud Developer's Cheat Sheet

    The Google Cloud Developer's Cheat Sheet

    Cheat sheet for Google Cloud developers

    Every product in the Google Cloud family described in <=4 words (with liberal use of hyphens and slashes) by the Google Developer Relations Team. This list only includes products that are publicly available. There are several products in pre-release/private-alpha that will not be included until they go public beta or GA. Many of these products have a free tier. There is also a free trial that will enable you try almost everything.
    Downloads: 0 This Week
    Last Update:
    See Project
  • $300 in Free Credit for Your Google Cloud Projects Icon
    $300 in Free Credit for Your Google Cloud Projects

    Build, test, and explore on Google Cloud with $300 in free credit. No hidden charges. No surprise bills.

    Launch your next project with $300 in free Google Cloud credit—no hidden charges. Test, build, and deploy without risk. Use your credit across the Google Cloud platform to find what works best for your needs. After your credits are used, continue building with free monthly usage products. Only pay when you're ready to scale. Sign up in minutes and start exploring.
    Start Free Trial
  • 10
    ChainerCV

    ChainerCV

    ChainerCV: a Library for Deep Learning in Computer Vision

    ...In ChainerCV, we define the object detection task as a problem of, given an image, bounding box-based localization and categorization of objects. Bounding boxes in an image are represented as a two-dimensional array of shape (R,4), where R is the number of bounding boxes and the second axis corresponds to the coordinates of bounding boxes. ChainerCV supports dataset loaders, which can be used to easily index examples with list-like interfaces. Dataset classes whose names end with BboxDataset contain annotations of where objects locate in an image and which categories they are assigned to. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11

    text_summurization_abstractive_methods

    Multiple implementations for abstractive text summurization

    This repo is built to collect multiple implementations for abstractive approaches to address text summarization it is built to simply run on google colab , in one notebook so you would only need an internet connection to run these examples without the need to have a powerful machine , so all the code examples would be in a jupyter format , and you don't have to download data to your device as we connect these jupyter notebooks to google drive
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next
MongoDB Logo MongoDB