• Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Cloud tools for web scraping and data extraction Icon
    Cloud tools for web scraping and data extraction

    Deploy pre-built tools that crawl websites, extract structured data, and feed your applications. Reliable web data without maintaining scrapers.

    Automate web data collection with cloud tools that handle anti-bot measures, browser rendering, and data transformation out of the box. Extract content from any website, push to vector databases for RAG workflows, or pipe directly into your apps via API. Schedule runs, set up webhooks, and connect to your existing stack. Free tier available, then scale as you need to.
    Explore 10,000+ tools
  • 1
    Darts

    Darts

    A python library for easy manipulation and forecasting of time series

    darts is a Python library for easy manipulation and forecasting of time series. It contains a variety of models, from classics such as ARIMA to deep neural networks. The models can all be used in the same way, using fit() and predict() functions, similar to scikit-learn. The library also makes it easy to backtest models, combine the predictions of several models, and take external data into account. Darts supports both univariate and multivariate time series and models. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Transformers

    Transformers

    State-of-the-art Machine Learning for Pytorch, TensorFlow, and JAX

    ...Transformers provides APIs to quickly download and use those pretrained models on a given text, fine-tune them on your own datasets and then share them with the community on our model hub. At the same time, each python module defining an architecture is fully standalone and can be modified to enable quick research experiments.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 3
    tsai

    tsai

    Time series Timeseries Deep Learning Machine Learning Pytorch fastai

    ...This is the type of output you would get in a classification task. New tutorial notebook on how to train your model with larger-than-memory datasets in less time achieving up to 100% GPU usage! See our new tutorial notebook on how to track your experiments with Weights & Biases
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    GluonTS

    GluonTS

    Probabilistic time series modeling in Python

    GluonTS is a Python package for probabilistic time series modeling, focusing on deep learning based models. GluonTS requires Python 3.6 or newer, and the easiest way to install it is via pip. We train a DeepAR-model and make predictions using the simple "airpassengers" dataset. The dataset consists of a single time-series, containing monthly international passengers between the years 1949 and 1960, a total of 144 values (12 years * 12 months).
    Downloads: 0 This Week
    Last Update:
    See Project
  • All-in-one security tool helps you prevent ransomware and breaches. Icon
    All-in-one security tool helps you prevent ransomware and breaches.

    SIEM + Detection and Response for IT Teams

    Blumira’s detection and response platform enables faster resolution of threats to help you stop ransomware attacks and prevent data breaches. We surface real threats, providing meaningful findings so you know what to prioritize. With our 3-step rapid response, you can automatically block known threats, use our playbooks for easy remediation, or contact our security team for additional guidance. Our responsive security team helps with onboarding, triage and ongoing consultations to continuously help your organization improve your security coverage.
    Learn More
  • 5
    vJEPA-2

    vJEPA-2

    PyTorch code and models for VJEPA2 self-supervised learning from video

    VJEPA2 is a next-generation self-supervised learning framework for video that extends the “predict in representation space” idea from i-JEPA to the temporal domain. Instead of reconstructing pixels, it predicts the missing high-level embeddings of masked space-time regions using a context encoder and a slowly updated target encoder. This objective encourages the model to learn semantics, motion, and long-range structure without the shortcuts that pixel-level losses can invite. The architecture is designed to scale: spatiotemporal ViT backbones, flexible masking schedules, and efficient sampling let it train on long clips while remaining stable. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 6
    Triton Inference Server

    Triton Inference Server

    The Triton Inference Server provides an optimized cloud

    ...Triton supports inference across cloud, data center, edge, and embedded devices on NVIDIA GPUs, x86 and ARM CPU, or AWS Inferentia. Triton delivers optimized performance for many query types, including real-time, batched, ensembles, and audio/video streaming. Provides Backend API that allows adding custom backends and pre/post-processing operations. Model pipelines using Ensembling or Business Logic Scripting (BLS). HTTP/REST and GRPC inference protocols based on the community-developed KServe protocol. A C API and Java API allow Triton to link directly into your application for edge and other in-process use cases.
    Downloads: 8 This Week
    Last Update:
    See Project
  • 7
    Make-A-Video - Pytorch (wip)

    Make-A-Video - Pytorch (wip)

    Implementation of Make-A-Video, new SOTA text to video generator

    ...The gist of the paper comes down to, take a SOTA text-to-image model (here they use DALL-E2, but the same learning points would easily apply to Imagen), make a few minor modifications for attention across time and other ways to skimp on the compute cost, do frame interpolation correctly, get a great video model out. Passing in images (if one were to pretrain on images first), both temporal convolution and attention will be automatically skipped. In other words, you can use this straightforwardly in your 2d Unet and then port it over to a 3d Unet once that phase of the training is done.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 8
    NeuralProphet

    NeuralProphet

    A simple forecasting package

    NeuralProphet bridges the gap between traditional time-series models and deep learning methods. It's based on PyTorch and can be installed using pip. A Neural Network based Time-Series model, inspired by Facebook Prophet and AR-Net, built on PyTorch. You can find the datasets used in the tutorials, including data preprocessing examples, in our neuralprophet-data repository. The documentation page may not we entirely up to date.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Recommenders

    Recommenders

    Best practices on recommendation systems

    ...Independent or incubating algorithms and utilities are candidates for the contrib folder. This will house contributions which may not easily fit into the core repository or need time to refactor or mature the code and add necessary tests.
    Downloads: 4 This Week
    Last Update:
    See Project
  • Axe Credit Portal - ACP- is axefinance’s future-proof AI-driven solution to digitalize the loan process from KYC to servicing, available as a locally hosted or cloud-based software. Icon
    Axe Credit Portal - ACP- is axefinance’s future-proof AI-driven solution to digitalize the loan process from KYC to servicing, available as a locally hosted or cloud-based software.

    Banks, lending institutions

    Founded in 2004, axefinance is a global market-leading software provider focused on credit risk automation for lenders looking to provide an efficient, competitive, and seamless omnichannel financing journey for all client segments (FI, Retail, Commercial, and Corporate.)
    Learn More
  • 10
    Rhino

    Rhino

    On-device Speech-to-Intent engine powered by deep learning

    Rhino is Picovoice's Speech-to-Intent engine. It directly infers intent from spoken commands within a given context of interest, in real-time. The end-to-end platform for embedding private voice AI into any software in a few lines of code. Design with no limits on top of a modular platform. Create use-case-specific voice AI models in seconds. Develop voice features with a few lines of code using intuitive and cross-platform SDKs. Deliver voice AI everywhere: on-device, mobile, web browsers, on-premise, or cloud. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 11
    Jittor

    Jittor

    Jittor is a high-performance deep learning framework

    Jittor is a high-performance deep learning framework based on JIT compiling and meta-operators. The whole framework and meta-operators are compiled just in time. A powerful op compiler and tuner are integrated into Jittor. It allowed us to generate high-performance code specialized for your model. Jittor also contains a wealth of high-performance model libraries, including image recognition, detection, segmentation, generation, differentiable rendering, geometric learning, reinforcement learning, etc. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    AWS Neuron

    AWS Neuron

    Powering Amazon custom machine learning chips

    AWS Neuron is a software development kit (SDK) for running machine learning inference using AWS Inferentia chips. It consists of a compiler, run-time, and profiling tools that enable developers to run high-performance and low latency inference using AWS Inferentia-based Amazon EC2 Inf1 instances. Using Neuron developers can easily train their machine learning models on any popular framework such as TensorFlow, PyTorch, and MXNet, and run it optimally on Amazon EC2 Inf1 instances. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    OpenCV

    OpenCV

    Open Source Computer Vision Library

    The Open Source Computer Vision Library has >2500 algorithms, extensive documentation and sample code for real-time computer vision. It works on Windows, Linux, Mac OS X, Android, iOS in your browser through JavaScript. Languages: C++, Python, Julia, Javascript Homepage: https://opencv.org Q&A forum: https://forum.opencv.org/ Documentation: https://docs.opencv.org Source code: https://github.com/opencv Please pay special attention to our tutorials!
    Leader badge
    Downloads: 3,528 This Week
    Last Update:
    See Project
  • 14
    pipeless

    pipeless

    A computer vision framework to create and deploy apps in minutes

    Pipeless is an open-source computer vision framework to create and deploy applications without the complexity of building and maintaining multimedia pipelines. It ships everything you need to create and deploy efficient computer vision applications that work in real-time in just minutes. Pipeless is inspired by modern serverless technologies. It provides the development experience of serverless frameworks applied to computer vision. You provide some functions that are executed for new video frames and Pipeless takes care of everything else. You can easily use industry-standard models, such as YOLO, or load your custom model in one of the supported inference runtimes. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Horovod

    Horovod

    Distributed training framework for TensorFlow, Keras, PyTorch, etc.

    Horovod was originally developed by Uber to make distributed deep learning fast and easy to use, bringing model training time down from days and weeks to hours and minutes. With Horovod, an existing training script can be scaled up to run on hundreds of GPUs in just a few lines of Python code. Horovod can be installed on-premise or run out-of-the-box in cloud platforms, including AWS, Azure, and Databricks. Horovod can additionally run on top of Apache Spark, making it possible to unify data processing and model training into a single pipeline. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 16
    AI-Agent-Host

    AI-Agent-Host

    The AI Agent Host is a module-based development environment.

    ...It includes a docker-compose configuration with QuestDB, Grafana, Code-Server and Nginx. The AI Agent Host provides a seamless interface for managing and querying data, visualizing results, and coding in real-time. The AI Agent Host is built specifically for LangChain, a framework dedicated to developing applications powered by language models. LangChain recognizes that the most powerful and distinctive applications go beyond simply utilizing a language model and strive to be data-aware and agentic. Being data-aware involves connecting a language model to other sources of data, enabling a comprehensive understanding and analysis of information.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Auto-PyTorch

    Auto-PyTorch

    Automatic architecture search and hyperparameter optimization

    ...To bring the best of these two worlds together, we developed Auto-PyTorch, which jointly and robustly optimizes the network architecture and the training hyperparameters to enable fully automated deep learning (AutoDL). Auto-PyTorch is mainly developed to support tabular data (classification, regression) and time series data (forecasting). The newest features in Auto-PyTorch for tabular data are described in the paper "Auto-PyTorch Tabular: Multi-Fidelity MetaLearning for Efficient and Robust AutoDL" (see below for bibtex ref). Details about Auto-PyTorch for multi-horizontal time series forecasting tasks can be found in the paper "Efficient Automated Deep Learning for Time Series Forecasting" (also see below for bibtex ref).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Chainer

    Chainer

    A flexible deep learning framework

    Chainer is a Python-based deep learning framework. It provides automatic differentiation APIs based on dynamic computational graphs as well as high-level APIs for neural networks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Deep learning time series forecasting

    Deep learning time series forecasting

    Deep learning PyTorch library for time series forecasting

    Example image Flow Forecast (FF) is an open-source deep learning for time series forecasting framework. It provides all the latest state-of-the-art models (transformers, attention models, GRUs) and cutting-edge concepts with easy-to-understand interpretability metrics, cloud provider integration, and model serving capabilities. Flow Forecast was the first time series framework to feature support for transformer-based models and remains the only true end-to-end deep learning for time series forecasting framework. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    YOLOv3

    YOLOv3

    Object detection architectures and models pretrained on the COCO data

    Fast, precise and easy to train, YOLOv5 has a long and successful history of real time object detection. Treat YOLOv5 as a university where you'll feed your model information for it to learn from and grow into one integrated tool. You can get started with less than 6 lines of code. with YOLOv5 and its Pytorch implementation. Have a go using our API by uploading your own image and watch as YOLOv5 identifies objects using our pretrained models.
    Downloads: 46 This Week
    Last Update:
    See Project
  • 21
    Face Mask Detection

    Face Mask Detection

    Face Mask Detection system based on computer vision and deep learning

    ...Face Mask Detection System built with OpenCV, Keras/TensorFlow using Deep Learning and Computer Vision concepts in order to detect face masks in static images as well as in real-time video streams. Amid the ongoing COVID-19 pandemic, there are no efficient face mask detection applications which are now in high demand for transportation means, densely populated areas, residential districts, large-scale manufacturers and other enterprises to ensure safety. The absence of large datasets of ‘with_mask’ images has made this task cumbersome and challenging. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    PaddlePaddle models

    PaddlePaddle models

    Pre-trained and Reproduced Deep Learning Models

    Pre-trained and Reproduced Deep Learning Models ("Flying Paddle" official model library, including a variety of academic frontier and industrial scene verification of deep learning models) Flying Paddle's industrial-level model library includes a large number of mainstream models that have been polished by industrial practice for a long time and models that have won championships in international competitions; it provides many scenarios for semantic understanding, image classification, target detection, image segmentation, text recognition, speech synthesis, etc. An end-to-end development kit that meets the needs of enterprises for low-cost development and rapid integration. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Consistent Depth

    Consistent Depth

    We estimate dense, flicker-free, geometrically consistent depth

    Consistent Depth is a research project developed by Facebook Research that presents an algorithm for reconstructing dense and geometrically consistent depth information for all pixels in a monocular video. The system builds upon traditional structure-from-motion (SfM) techniques to provide geometric constraints while integrating a convolutional neural network trained for single-image depth estimation. During inference, the model fine-tunes itself to align with the geometric constraints of a...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 24
    DeepLearning

    DeepLearning

    Deep Learning (Flower Book) mathematical derivation

    ...It is edited by three world-renowned experts, Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Includes linear algebra, probability theory, information theory, numerical optimization, and related content in machine learning. At the same time, it also introduces deep learning techniques used by practitioners in the industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling and practical methods, and investigates topics such as natural language processing, Applications in speech recognition, computer vision, online recommender systems, bioinformatics, and video games. ...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 25
    deep-q-learning

    deep-q-learning

    Minimal Deep Q Learning (DQN & DDQN) implementations in Keras

    ...For learners and researchers interested in reinforcement learning, this repo offers a concrete, runnable example bridging theory and practice: you can execute the code, play with hyperparameters, observe convergence behavior, and see how deep Q-learning learns policies over time in standard environments. Because it’s self-contained and Python-based, it's well-suited for experimentation, modifications, or extension — for instance adapting to custom Gym environments, tweaking network architecture, or combining with other RL techniques.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • Next