Showing 47 open source projects for "python image editor"

View related business solutions
  • Cloud-based help desk software with ServoDesk Icon
    Cloud-based help desk software with ServoDesk

    Full access to Enterprise features. No credit card required.

    What if You Could Automate 90% of Your Repetitive Tasks in Under 30 Days? At ServoDesk, we help businesses like yours automate operations with AI, allowing you to cut service times in half and increase productivity by 25% - without hiring more staff.
    Try ServoDesk for free
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    Albumentations

    Albumentations

    Fast image augmentation library and an easy-to-use wrapper

    Albumentations is a computer vision tool that boosts the performance of deep convolutional neural networks. Albumentations is a Python library for fast and flexible image augmentations. Albumentations efficiently implements a rich variety of image transform operations that are optimized for performance, and does so while providing a concise, yet powerful image augmentation interface for different computer vision tasks, including object classification, segmentation, and detection. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    MMDeploy

    MMDeploy

    OpenMMLab Model Deployment Framework

    MMDeploy is an open-source deep learning model deployment toolset. It is a part of the OpenMMLab project. Models can be exported and run in several backends, and more will be compatible. All kinds of modules in the SDK can be extended, such as Transform for image processing, Net for Neural Network inference, Module for postprocessing and so on. Install and build your target backend. ONNX Runtime is a cross-platform inference and training accelerator compatible with many popular ML/DNN...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 3
    ImageBind

    ImageBind

    ImageBind One Embedding Space to Bind Them All

    ImageBind is a multimodal embedding framework that learns a shared representation space across six modalities—images, text, audio, depth, thermal, and IMU (inertial motion) data—without requiring explicit pairwise training for every modality combination. Instead of aligning each pair independently, ImageBind uses image data as the central binding modality, aligning all other modalities to it so they can interoperate zero-shot. This creates a unified embedding space where representations from...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Transformers

    Transformers

    State-of-the-art Machine Learning for Pytorch, TensorFlow, and JAX

    ...Text, for tasks like text classification, information extraction, question answering, summarization, translation, text generation, in over 100 languages. Images, for tasks like image classification, object detection, and segmentation. Audio, for tasks like speech recognition and audio classification. Transformers provides APIs to quickly download and use those pretrained models on a given text, fine-tune them on your own datasets and then share them with the community on our model hub. At the same time, each python module defining an architecture is fully standalone and can be modified to enable quick research experiments.
    Downloads: 3 This Week
    Last Update:
    See Project
  • eProcurement Software Icon
    eProcurement Software

    Enterprises and companies seeking a solution to manage all their procurement operations and processes

    eBuyerAssist by Eyvo is a cloud-based procurement solution designed for businesses of all sizes and industries. Fully modular and scalable, it streamlines the entire procurement lifecycle—from requisition to fulfillment. The platform includes powerful tools for strategic sourcing, supplier management, warehouse operations, and contract oversight. Additional modules cover purchase orders, approval workflows, inventory and asset management, customer orders, budget control, cost accounting, invoice matching, vendor credit checks, and risk analysis. eBuyerAssist centralizes all procurement functions into a single, easy-to-use system—improving visibility, control, and efficiency across your organization. Whether you're aiming to reduce costs, enhance compliance, or align procurement with broader business goals, eBuyerAssist helps you get there faster, smarter, and with measurable results.
    Learn More
  • 5
    AutoGluon

    AutoGluon

    AutoGluon: AutoML for Image, Text, and Tabular Data

    AutoGluon enables easy-to-use and easy-to-extend AutoML with a focus on automated stack ensembling, deep learning, and real-world applications spanning image, text, and tabular data. Intended for both ML beginners and experts, AutoGluon enables you to quickly prototype deep learning and classical ML solutions for your raw data with a few lines of code. Automatically utilize state-of-the-art techniques (where appropriate) without expert knowledge. Leverage automatic hyperparameter tuning,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    MONAI

    MONAI

    AI Toolkit for Healthcare Imaging

    The MONAI framework is the open-source foundation being created by Project MONAI. MONAI is a freely available, community-supported, PyTorch-based framework for deep learning in healthcare imaging. It provides domain-optimized foundational capabilities for developing healthcare imaging training workflows in a native PyTorch paradigm. Project MONAI also includes MONAI Label, an intelligent open source image labeling and learning tool that helps researchers and clinicians collaborate, create...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 7
    Jittor

    Jittor

    Jittor is a high-performance deep learning framework

    ...A powerful op compiler and tuner are integrated into Jittor. It allowed us to generate high-performance code specialized for your model. Jittor also contains a wealth of high-performance model libraries, including image recognition, detection, segmentation, generation, differentiable rendering, geometric learning, reinforcement learning, etc. The front-end language is Python. Module Design and Dynamic Graph Execution is used in the front-end, which is the most popular design for deep learning framework interface. The back-end is implemented by high-performance languages, such as CUDA, C++. ...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 8
    Lightly

    Lightly

    A python library for self-supervised learning on images

    A python library for self-supervised learning on images. We, at Lightly, are passionate engineers who want to make deep learning more efficient. That's why - together with our community - we want to popularize the use of self-supervised methods to understand and curate raw image data. Our solution can be applied before any data annotation step and the learned representations can be used to visualize and analyze datasets.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 9
    Thinc

    Thinc

    A refreshing functional take on deep learning

    Thinc is a lightweight deep learning library that offers an elegant, type-checked, functional-programming API for composing models, with support for layers defined in other frameworks such as PyTorch, TensorFlow and MXNet. You can use Thinc as an interface layer, a standalone toolkit or a flexible way to develop new models. Previous versions of Thinc have been running quietly in production in thousands of companies, via both spaCy and Prodigy. We wrote the new version to let users compose,...
    Downloads: 6 This Week
    Last Update:
    See Project
  • Inventors: Validate Your Idea, Protect It and Gain Market Advantages Icon
    Inventors: Validate Your Idea, Protect It and Gain Market Advantages

    SenseIP is ideal for individual inventors, startups, and businesses

    senseIP is an AI innovation platform for inventors, automating any aspect of IP from the moment you have an idea. You can have it researched for uniqueness and protected; quickly and effortlessly, without expensive attorneys. Built for business success while securing your competitive edge.
    Learn More
  • 10
    Make-A-Video - Pytorch (wip)

    Make-A-Video - Pytorch (wip)

    Implementation of Make-A-Video, new SOTA text to video generator

    Implementation of Make-A-Video, new SOTA text to video generator from Meta AI, in Pytorch. They combine pseudo-3d convolutions (axial convolutions) and temporal attention and show much better temporal fusion. The pseudo-3d convolutions isn't a new concept. It has been explored before in other contexts, say for protein contact prediction as "dimensional hybrid residual networks". The gist of the paper comes down to, take a SOTA text-to-image model (here they use DALL-E2, but the same learning...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 11
    DeepVariant

    DeepVariant

    DeepVariant is an analysis pipeline that uses a deep neural networks

    DeepVariant is an analysis pipeline that uses a deep neural network to call genetic variants from next-generation DNA sequencing data. DeepVariant is a deep learning-based variant caller that takes aligned reads (in BAM or CRAM format), produces pileup image tensors from them, classifies each tensor using a convolutional neural network, and finally reports the results in a standard VCF or gVCF file. DeepTrio is a deep learning-based trio variant caller built on top of DeepVariant. DeepTrio...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 12
    PaddleX

    PaddleX

    PaddlePaddle End-to-End Development Toolkit

    PaddleX is a deep learning full-process development tool based on the core framework, development kit, and tool components of Paddle. It has three characteristics opening up the whole process, integrating industrial practice, and being easy to use and integrate. Image classification and labeling is the most basic and simplest labeling task. Users only need to put pictures belonging to the same category in the same folder. When the model is trained, we need to divide the training set, the...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 13
    ktrain

    ktrain

    ktrain is a Python library that makes deep learning AI more accessible

    ktrain is a Python library that makes deep learning and AI more accessible and easier to apply. ktrain is a lightweight wrapper for the deep learning library TensorFlow Keras (and other libraries) to help build, train, and deploy neural networks and other machine learning models. Inspired by ML framework extensions like fastai and ludwig, ktrain is designed to make deep learning and AI more accessible and easier to apply for both newcomers and experienced practitioners. With only a few lines...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    DocArray

    DocArray

    The data structure for multimodal data

    DocArray is a library for nested, unstructured, multimodal data in transit, including text, image, audio, video, 3D mesh, etc. It allows deep-learning engineers to efficiently process, embed, search, recommend, store, and transfer multimodal data with a Pythonic API. Door to multimodal world: super-expressive data structure for representing complicated/mixed/nested text, image, video, audio, 3D mesh data. The foundation data structure of Jina, CLIP-as-service, DALL·E Flow, DiscoArt etc. Data...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    AWS Deep Learning Containers

    AWS Deep Learning Containers

    A set of Docker images for training and serving models in TensorFlow

    AWS Deep Learning Containers (DLCs) are a set of Docker images for training and serving models in TensorFlow, TensorFlow 2, PyTorch, and MXNet. Deep Learning Containers provide optimized environments with TensorFlow and MXNet, Nvidia CUDA (for GPU instances), and Intel MKL (for CPU instances) libraries and are available in the Amazon Elastic Container Registry (Amazon ECR). The AWS DLCs are used in Amazon SageMaker as the default vehicles for your SageMaker jobs such as training, inference,...
    Downloads: 7 This Week
    Last Update:
    See Project
  • 16
    PyTorch Geometric

    PyTorch Geometric

    Geometric deep learning extension library for PyTorch

    ...We have outsourced a lot of functionality of PyTorch Geometric to other packages, which needs to be additionally installed. These packages come with their own CPU and GPU kernel implementations based on C++/CUDA extensions. We do not recommend installation as root user on your system python. Please setup an Anaconda/Miniconda environment or create a Docker image. We provide pip wheels for all major OS/PyTorch/CUDA combinations.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Raster Vision

    Raster Vision

    Open source framework for deep learning satellite and aerial imagery

    Raster Vision is an open source framework for Python developers building computer vision models on satellite, aerial, and other large imagery sets (including oblique drone imagery). There is built-in support for chip classification, object detection, and semantic segmentation using PyTorch. Raster Vision allows engineers to quickly and repeatably configure pipelines that go through core components of a machine learning workflow: analyzing training data, creating training chips, training...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 18
    DeepSpeed MII

    DeepSpeed MII

    MII makes low-latency and high-throughput inference possible

    ...The Deep Learning (DL) open-source community has seen tremendous growth in the last few months. Incredibly powerful text generation models such as the Bloom 176B, or image generation model such as Stable Diffusion are now available to anyone with access to a handful or even a single GPU through platforms such as Hugging Face. While open-sourcing has democratized access to AI capabilities, their application is still restricted by two critical factors: inference latency and cost. DeepSpeed-MII is a new open-source python library from DeepSpeed, aimed towards making low-latency, low-cost inference of powerful models not only feasible but also easily accessible. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    JEPA

    JEPA

    PyTorch code and models for V-JEPA self-supervised learning from video

    JEPA (Joint-Embedding Predictive Architecture) captures the idea of predicting missing high-level representations rather than reconstructing pixels, aiming for robust, scalable self-supervised learning. A context encoder ingests visible regions and predicts target embeddings for masked regions produced by a separate target encoder, avoiding low-level reconstruction losses that can overfit to texture. This makes learning focus on semantics and structure, yielding features that transfer well...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Jina

    Jina

    Build cross-modal and multimodal applications on the cloud

    Jina is a framework that empowers anyone to build cross-modal and multi-modal applications on the cloud. It uplifts a PoC into a production-ready service. Jina handles the infrastructure complexity, making advanced solution engineering and cloud-native technologies accessible to every developer. Build applications that deliver fresh insights from multiple data types such as text, image, audio, video, 3D mesh, PDF with Jina AI’s DocArray. Polyglot gateway that supports gRPC, Websockets, HTTP,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Face Alignment

    Face Alignment

    2D and 3D Face alignment library build using pytorch

    Detect facial landmarks from Python using the world's most accurate face alignment network, capable of detecting points in both 2D and 3D coordinates. Build using FAN's state-of-the-art deep learning-based face alignment method. For numerical evaluations, it is highly recommended to use the lua version which uses identical models with the ones evaluated in the paper. More models will be added soon. By default, the package will use the SFD face detector. However, the users can alternatively...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 22
    fastMRI

    fastMRI

    A large open dataset + tools to speed up MRI scans using ML

    fastMRI is a large-scale collaborative research project by Facebook AI Research (FAIR) and NYU Langone Health that explores how deep learning can accelerate magnetic resonance imaging (MRI) acquisition without compromising image quality. By enabling reconstruction of high-fidelity MR images from significantly fewer measurements, fastMRI aims to make MRI scanning faster, cheaper, and more accessible in clinical settings. The repository provides an open-source PyTorch framework with data...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Deep learning time series forecasting

    Deep learning time series forecasting

    Deep learning PyTorch library for time series forecasting

    Example image Flow Forecast (FF) is an open-source deep learning for time series forecasting framework. It provides all the latest state-of-the-art models (transformers, attention models, GRUs) and cutting-edge concepts with easy-to-understand interpretability metrics, cloud provider integration, and model serving capabilities. Flow Forecast was the first time series framework to feature support for transformer-based models and remains the only true end-to-end deep learning for time series...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Deep Daze

    Deep Daze

    Simple command line tool for text to image generation

    Simple command-line tool for text to image generation using OpenAI's CLIP and Siren (Implicit neural representation network). In true deep learning fashion, more layers will yield better results. Default is at 16, but can be increased to 32 depending on your resources. Technique first devised and shared by Mario Klingemann, it allows you to prime the generator network with a starting image, before being steered towards the text. Simply specify the path to the image you wish to use, and...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 25
    LayoutParser

    LayoutParser

    A Unified Toolkit for Deep Learning Based Document Image Analysis

    With the help of state-of-the-art deep learning models, Layout Parser enables extracting complicated document structures using only several lines of code. This method is also more robust and generalizable as no sophisticated rules are involved in this process. A complete instruction for installing the main Layout Parser library and auxiliary components. Learn how to load DL Layout models and use them for layout detection. The full list of layout models currently available in Layout Parser....
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • Next