Showing 143 open source projects for "linux"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Desktop and Mobile Device Management Software Icon
    Desktop and Mobile Device Management Software

    It's a modern take on desktop management that can be scaled as per organizational needs.

    Desktop Central is a unified endpoint management (UEM) solution that helps in managing servers, laptops, desktops, smartphones, and tablets from a central location.
    Learn More
  • 1
    Keras

    Keras

    Python-based neural networks API

    Python Deep Learning library
    Downloads: 10 This Week
    Last Update:
    See Project
  • 2
    HanLP

    HanLP

    Han Language Processing

    HanLP is a multilingual Natural Language Processing (NLP) library composed of a series of models and algorithms. Built on TensorFlow 2.0, it was designed to advance state-of-the-art deep learning techniques and popularize the application of natural language processing in both academia and industry. HanLP is capable of lexical analysis (Chinese word segmentation, part-of-speech tagging, named entity recognition), syntax analysis, text classification, and sentiment analysis. It comes with...
    Downloads: 9 This Week
    Last Update:
    See Project
  • 3
    SageMaker Hugging Face Inference Toolkit

    SageMaker Hugging Face Inference Toolkit

    Library for serving Transformers models on Amazon SageMaker

    SageMaker Hugging Face Inference Toolkit is an open-source library for serving Transformers models on Amazon SageMaker. This library provides default pre-processing, predict and postprocessing for certain Transformers models and tasks. It utilizes the SageMaker Inference Toolkit for starting up the model server, which is responsible for handling inference requests. For the Dockerfiles used for building SageMaker Hugging Face Containers, see AWS Deep Learning Containers. The SageMaker Hugging...
    Downloads: 9 This Week
    Last Update:
    See Project
  • 4
    MONAI

    MONAI

    AI Toolkit for Healthcare Imaging

    The MONAI framework is the open-source foundation being created by Project MONAI. MONAI is a freely available, community-supported, PyTorch-based framework for deep learning in healthcare imaging. It provides domain-optimized foundational capabilities for developing healthcare imaging training workflows in a native PyTorch paradigm. Project MONAI also includes MONAI Label, an intelligent open source image labeling and learning tool that helps researchers and clinicians collaborate, create...
    Downloads: 7 This Week
    Last Update:
    See Project
  • Cortex: Boost Developer Coding Skills Icon
    Cortex: Boost Developer Coding Skills

    Cortex makes coding easier and faster for developers. See how our portal connects tools and cuts busywork.

    Cortex is a simple portal that helps developers work smarter by linking all your tools, setting clear rules, and slashing repetitive tasks. It speeds up onboarding, updates old code, and fixes issues fast. Over 100 big companies use it to save time and get better results.
    Try it now!
  • 5
    Transformers

    Transformers

    State-of-the-art Machine Learning for Pytorch, TensorFlow, and JAX

    Transformers provides APIs and tools to easily download and train state-of-the-art pre-trained models. Using pre-trained models can reduce your compute costs, carbon footprint, and save you the time and resources required to train a model from scratch. These models support common tasks in different modalities. Text, for tasks like text classification, information extraction, question answering, summarization, translation, text generation, in over 100 languages. Images, for tasks like image...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 6
    FATE

    FATE

    An industrial grade federated learning framework

    FATE (Federated AI Technology Enabler) is the world's first industrial grade federated learning open source framework to enable enterprises and institutions to collaborate on data while protecting data security and privacy. It implements secure computation protocols based on homomorphic encryption and multi-party computation (MPC). Supporting various federated learning scenarios, FATE now provides a host of federated learning algorithms, including logistic regression, tree-based algorithms,...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 7
    Pyro

    Pyro

    Deep universal probabilistic programming with Python and PyTorch

    Pyro is a flexible, universal probabilistic programming language (PPL) built on PyTorch. It allows for expressive deep probabilistic modeling, combining the best of modern deep learning and Bayesian modeling. Pyro is centered on four main principles: Universal, Scalable, Minimal and Flexible. Pyro is universal in that it can represent any computable probability distribution. It scales easily to large datasets with minimal overhead, and has a small yet powerful core of composable...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 8
    OpenVINO Training Extensions

    OpenVINO Training Extensions

    Trainable models and NN optimization tools

    OpenVINO™ Training Extensions provide a convenient environment to train Deep Learning models and convert them using the OpenVINO™ toolkit for optimized inference. When ote_cli is installed in the virtual environment, you can use the ote command line interface to perform various actions for templates related to the chosen task type, such as running, training, evaluating, exporting, etc. ote train trains a model (a particular model template) on a dataset and saves results in two files. ote...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 9
    Megatron

    Megatron

    Ongoing research training transformer models at scale

    Megatron is a large, powerful transformer developed by the Applied Deep Learning Research team at NVIDIA. This repository is for ongoing research on training large transformer language models at scale. We developed efficient, model-parallel (tensor, sequence, and pipeline), and multi-node pre-training of transformer based models such as GPT, BERT, and T5 using mixed precision. Megatron is also used in NeMo Megatron, a framework to help enterprises overcome the challenges of building and...
    Downloads: 3 This Week
    Last Update:
    See Project
  • Knowledge Is The Cornerstone Of Your Business. Icon
    Knowledge Is The Cornerstone Of Your Business.

    MentorCity works best for associations, companies, and schools

    MentorCity is a comprehensive and intuitive online mentoring software cultivating the future of organizations and individuals through the power of connections and relationships. Specifically created for associations, companies, and schools, MentorCity assists in member engagement, leadership development, succession planning, and diversity and inclusion strategies. Serving as a powerful personal development tool, MentorCity helps organizations save time and money by lessening matching responsibilities and allowing program administrator to focus their efforts on building a mentoring culture that achieves exceptional results.
    Learn More
  • 10
    SHAP

    SHAP

    A game theoretic approach to explain the output of ml models

    SHAP (SHapley Additive exPlanations) is a game theoretic approach to explain the output of any machine learning model. It connects optimal credit allocation with local explanations using the classic Shapley values from game theory and their related extensions. While SHAP can explain the output of any machine learning model, we have developed a high-speed exact algorithm for tree ensemble methods. Fast C++ implementations are supported for XGBoost, LightGBM, CatBoost, scikit-learn and pyspark...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 11
    Make-A-Video - Pytorch (wip)

    Make-A-Video - Pytorch (wip)

    Implementation of Make-A-Video, new SOTA text to video generator

    Implementation of Make-A-Video, new SOTA text to video generator from Meta AI, in Pytorch. They combine pseudo-3d convolutions (axial convolutions) and temporal attention and show much better temporal fusion. The pseudo-3d convolutions isn't a new concept. It has been explored before in other contexts, say for protein contact prediction as "dimensional hybrid residual networks". The gist of the paper comes down to, take a SOTA text-to-image model (here they use DALL-E2, but the same learning...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 12
    The Hypersim Dataset

    The Hypersim Dataset

    Photorealistic Synthetic Dataset for Holistic Indoor Scene

    Hypersim is a large-scale, photorealistic synthetic dataset and tooling suite for indoor scene understanding research. It provides richly annotated renderings—RGB, depth, surface normals, instance and semantic segmentations, and material/lighting metadata—produced from high-fidelity virtual environments. The dataset spans diverse furniture layouts, room types, and camera trajectories, enabling robust training for geometry, segmentation, and SLAM-adjacent tasks. Rendering pipelines and...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 13
    DeepSpeed

    DeepSpeed

    Deep learning optimization library: makes distributed training easy

    DeepSpeed is an easy-to-use deep learning optimization software suite that enables unprecedented scale and speed for Deep Learning Training and Inference. With DeepSpeed you can: 1. Train/Inference dense or sparse models with billions or trillions of parameters 2. Achieve excellent system throughput and efficiently scale to thousands of GPUs 3. Train/Inference on resource constrained GPU systems 4. Achieve unprecedented low latency and high throughput for inference 5. Achieve extreme...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 14
    PaddleX

    PaddleX

    PaddlePaddle End-to-End Development Toolkit

    PaddleX is a deep learning full-process development tool based on the core framework, development kit, and tool components of Paddle. It has three characteristics opening up the whole process, integrating industrial practice, and being easy to use and integrate. Image classification and labeling is the most basic and simplest labeling task. Users only need to put pictures belonging to the same category in the same folder. When the model is trained, we need to divide the training set, the...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 15
    Best-of Machine Learning with Python

    Best-of Machine Learning with Python

    A ranked list of awesome machine learning Python libraries

    This curated list contains 900 awesome open-source projects with a total of 3.3M stars grouped into 34 categories. All projects are ranked by a project-quality score, which is calculated based on various metrics automatically collected from GitHub and different package managers. If you like to add or update projects, feel free to open an issue, submit a pull request, or directly edit the projects.yaml. Contributions are very welcome! General-purpose machine learning and deep learning...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 16
    DLRM

    DLRM

    An implementation of a deep learning recommendation model (DLRM)

    DLRM (Deep Learning Recommendation Model) is Meta’s open-source reference implementation for large-scale recommendation systems built to handle extremely high-dimensional sparse features and embedding tables. The architecture combines dense (MLP) and sparse (embedding) branches, then interacts features via dot product or feature interactions before passing through further dense layers to predict click-through, ranking scores, or conversion probabilities. The implementation is optimized for...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 17
    Hivemind

    Hivemind

    Decentralized deep learning in PyTorch. Built to train models

    Hivemind is a PyTorch library for decentralized deep learning across the Internet. Its intended usage is training one large model on hundreds of computers from different universities, companies, and volunteers. Distributed training without a master node: Distributed Hash Table allows connecting computers in a decentralized network. Fault-tolerant backpropagation: forward and backward passes succeed even if some nodes are unresponsive or take too long to respond. Decentralized parameter...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 18
    spaCy

    spaCy

    Industrial-strength Natural Language Processing (NLP)

    spaCy is a library built on the very latest research for advanced Natural Language Processing (NLP) in Python and Cython. Since its inception it was designed to be used for real world applications-- for building real products and gathering real insights. It comes with pretrained statistical models and word vectors, convolutional neural network models, easy deep learning integration and so much more. spaCy is the fastest syntactic parser in the world according to independent benchmarks, with...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 19
    ktrain

    ktrain

    ktrain is a Python library that makes deep learning AI more accessible

    ktrain is a Python library that makes deep learning and AI more accessible and easier to apply. ktrain is a lightweight wrapper for the deep learning library TensorFlow Keras (and other libraries) to help build, train, and deploy neural networks and other machine learning models. Inspired by ML framework extensions like fastai and ludwig, ktrain is designed to make deep learning and AI more accessible and easier to apply for both newcomers and experienced practitioners. With only a few lines...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 20
    AutoGluon

    AutoGluon

    AutoGluon: AutoML for Image, Text, and Tabular Data

    AutoGluon enables easy-to-use and easy-to-extend AutoML with a focus on automated stack ensembling, deep learning, and real-world applications spanning image, text, and tabular data. Intended for both ML beginners and experts, AutoGluon enables you to quickly prototype deep learning and classical ML solutions for your raw data with a few lines of code. Automatically utilize state-of-the-art techniques (where appropriate) without expert knowledge. Leverage automatic hyperparameter tuning,...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 21
    DeepSpeed MII

    DeepSpeed MII

    MII makes low-latency and high-throughput inference possible

    MII makes low-latency and high-throughput inference possible, powered by DeepSpeed. The Deep Learning (DL) open-source community has seen tremendous growth in the last few months. Incredibly powerful text generation models such as the Bloom 176B, or image generation model such as Stable Diffusion are now available to anyone with access to a handful or even a single GPU through platforms such as Hugging Face. While open-sourcing has democratized access to AI capabilities, their application is...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 22
    TorchIO

    TorchIO

    Medical imaging toolkit for deep learning

    TorchIO is an open-source Python library for efficient loading, preprocessing, augmentation and patch-based sampling of 3D medical images in deep learning, following the design of PyTorch. It includes multiple intensity and spatial transforms for data augmentation and preprocessing. These transforms include typical computer vision operations such as random affine transformations and also domain-specific ones such as simulation of intensity artifacts due to MRI magnetic field inhomogeneity...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 23
    PyTorch Geometric

    PyTorch Geometric

    Geometric deep learning extension library for PyTorch

    It consists of various methods for deep learning on graphs and other irregular structures, also known as geometric deep learning, from a variety of published papers. In addition, it consists of an easy-to-use mini-batch loader for many small and single giant graphs, a large number of common benchmark datasets (based on simple interfaces to create your own), and helpful transforms, both for learning on arbitrary graphs as well as on 3D meshes or point clouds. We have outsourced a lot of...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 24
    vJEPA-2

    vJEPA-2

    PyTorch code and models for VJEPA2 self-supervised learning from video

    VJEPA2 is a next-generation self-supervised learning framework for video that extends the “predict in representation space” idea from i-JEPA to the temporal domain. Instead of reconstructing pixels, it predicts the missing high-level embeddings of masked space-time regions using a context encoder and a slowly updated target encoder. This objective encourages the model to learn semantics, motion, and long-range structure without the shortcuts that pixel-level losses can invite. The...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 25
    AudioCraft

    AudioCraft

    Audiocraft is a library for audio processing and generation

    AudioCraft is a PyTorch library for text-to-audio and text-to-music generation, packaging research models and tooling for training and inference. It includes MusicGen for music generation conditioned on text (and optionally melody) and AudioGen for text-conditioned sound effects and environmental audio. Both models operate over discrete audio tokens produced by a neural codec (EnCodec), which acts like a tokenizer for waveforms and enables efficient sequence modeling. The repo provides...
    Downloads: 2 This Week
    Last Update:
    See Project