Showing 154 open source projects for "google-visualization-python"

View related business solutions
  • Grafana: The open and composable observability platform Icon
    Grafana: The open and composable observability platform

    Faster answers, predictable costs, and no lock-in built by the team helping to make observability accessible to anyone.

    Grafana is the open source analytics & monitoring solution for every database.
    Learn More
  • Cloud-based help desk software with ServoDesk Icon
    Cloud-based help desk software with ServoDesk

    Full access to Enterprise features. No credit card required.

    What if You Could Automate 90% of Your Repetitive Tasks in Under 30 Days? At ServoDesk, we help businesses like yours automate operations with AI, allowing you to cut service times in half and increase productivity by 25% - without hiring more staff.
    Try ServoDesk for free
  • 1
    Python Outlier Detection

    Python Outlier Detection

    A Python toolbox for scalable outlier detection

    PyOD is a comprehensive and scalable Python toolkit for detecting outlying objects in multivariate data. This exciting yet challenging field is commonly referred as outlier detection or anomaly detection. PyOD includes more than 30 detection algorithms, from classical LOF (SIGMOD 2000) to the latest COPOD (ICDM 2020) and SUOD (MLSys 2021). Since 2017, PyOD [AZNL19] has been successfully used in numerous academic researches and commercial products [AZHC+21, AZNHL19].
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    Best-of Machine Learning with Python

    Best-of Machine Learning with Python

    A ranked list of awesome machine learning Python libraries

    This curated list contains 900 awesome open-source projects with a total of 3.3M stars grouped into 34 categories. All projects are ranked by a project-quality score, which is calculated based on various metrics automatically collected from GitHub and different package managers. If you like to add or update projects, feel free to open an issue, submit a pull request, or directly edit the projects.yaml. Contributions are very welcome! General-purpose machine learning and deep learning...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 3
    DeepChem

    DeepChem

    Democratizing Deep-Learning for Drug Discovery, Quantum Chemistry, etc

    ...All tutorials are designed to be run on Google collab (or locally if you prefer). Tutorials are arranged in a suggested learning sequence that will take you from beginner to proficient at molecular machine learning and computational biology more broadly.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    PaddleX

    PaddleX

    PaddlePaddle End-to-End Development Toolkit

    ...Therefore, we need to divide the above data. Using the paddlex command, the data set can be randomly divided into 70% training set, 20% validation set and 10% test set. If you use the PaddleX visualization client for model training, the data set division function is integrated in the client, and you do not need to use command division by yourself.
    Downloads: 2 This Week
    Last Update:
    See Project
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 5
    Keras

    Keras

    Python-based neural networks API

    Python Deep Learning library
    Downloads: 12 This Week
    Last Update:
    See Project
  • 6
    tsai

    tsai

    Time series Timeseries Deep Learning Machine Learning Pytorch fastai

    tsai is an open-source deep learning package built on top of Pytorch & fastai focused on state-of-the-art techniques for time series tasks like classification, regression, forecasting, and imputation. Starting with tsai 0.3.0 tsai will only install hard dependencies. Other soft dependencies (which are only required for selected tasks) will not be installed by default (this is the recommended approach. If you require any of the dependencies that is not installed, tsai will ask you to install...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Video-subtitle-extractor

    Video-subtitle-extractor

    A GUI tool for extracting hard-coded subtitle (hardsub) from videos

    Video hard subtitle extraction, generate srt file. There is no need to apply for a third-party API, and text recognition can be implemented locally. A deep learning-based video subtitle extraction framework, including subtitle region detection and subtitle content extraction. A GUI tool for extracting hard-coded subtitles (hardsub) from videos and generating srt files. Use local OCR recognition, no need to set up and call any API, and do not need to access online OCR services such as Baidu...
    Downloads: 65 This Week
    Last Update:
    See Project
  • 8
    AWS Neuron

    AWS Neuron

    Powering Amazon custom machine learning chips

    ...Neuron is pre-integrated into popular machine learning frameworks like TensorFlow, MXNet and Pytorch to provide a seamless training-to-inference workflow. It includes a compiler, runtime driver, as well as debug and profiling utilities with a TensorBoard plugin for visualization.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Ray

    Ray

    A unified framework for scalable computing

    ...Accelerate your hyperparameter search workloads with Ray Tune. Find the best model and reduce training costs by using the latest optimization algorithms. Deploy your machine learning models at scale with Ray Serve, a Python-first and framework agnostic model serving framework. Scale reinforcement learning (RL) with RLlib, a framework-agnostic RL library that ships with 30+ cutting-edge RL algorithms including A3C, DQN, and PPO. Easily build out scalable, distributed systems in Python with simple and composable primitives in Ray Core.
    Downloads: 3 This Week
    Last Update:
    See Project
  • Axe Credit Portal - ACP- is axefinance’s future-proof AI-driven solution to digitalize the loan process from KYC to servicing, available as a locally hosted or cloud-based software. Icon
    Axe Credit Portal - ACP- is axefinance’s future-proof AI-driven solution to digitalize the loan process from KYC to servicing, available as a locally hosted or cloud-based software.

    Banks, lending institutions

    Founded in 2004, axefinance is a global market-leading software provider focused on credit risk automation for lenders looking to provide an efficient, competitive, and seamless omnichannel financing journey for all client segments (FI, Retail, Commercial, and Corporate.)
    Learn More
  • 10
    Darts

    Darts

    A python library for easy manipulation and forecasting of time series

    ...The ML-based models can be trained on potentially large datasets containing multiple time series, and some of the models offer a rich support for probabilistic forecasting. We recommend to first setup a clean Python environment for your project with at least Python 3.7 using your favorite tool (conda, venv, virtualenv with or without virtualenvwrapper).
    Downloads: 2 This Week
    Last Update:
    See Project
  • 11
    Lightly

    Lightly

    A python library for self-supervised learning on images

    ...This allows selecting the best core set of samples for model training through advanced filtering. We provide PyTorch, PyTorch Lightning and PyTorch Lightning distributed examples for each of the models to kickstart your project. Lightly requires Python 3.6+ but we recommend using Python 3.7+. We recommend installing Lightly in a Linux or OSX environment. With lightly, you can use the latest self-supervised learning methods in a modular way using the full power of PyTorch. Experiment with different backbones, models, and loss functions.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 12
    fastai

    fastai

    Deep learning library

    ...This is possible thanks to a carefully layered architecture, which expresses common underlying patterns of many deep learning and data processing techniques in terms of decoupled abstractions. These abstractions can be expressed concisely and clearly by leveraging the dynamism of the underlying Python language and the flexibility of the PyTorch library. fastai is organized around two main design goals: to be approachable and rapidly productive, while also being deeply hackable and configurable. It is built on top of a hierarchy of lower-level APIs which provide composable building blocks.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 13
    spaCy

    spaCy

    Industrial-strength Natural Language Processing (NLP)

    spaCy is a library built on the very latest research for advanced Natural Language Processing (NLP) in Python and Cython. Since its inception it was designed to be used for real world applications-- for building real products and gathering real insights. It comes with pretrained statistical models and word vectors, convolutional neural network models, easy deep learning integration and so much more. spaCy is the fastest syntactic parser in the world according to independent benchmarks, with an accuracy within 1% of the best available. ...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 14
    AutoKeras

    AutoKeras

    AutoML library for deep learning

    AutoKeras: An AutoML system based on Keras. It is developed by DATA Lab at Texas A&M University. The goal of AutoKeras is to make machine learning accessible to everyone. AutoKeras only support Python 3. If you followed previous steps to use virtualenv to install tensorflow, you can just activate the virtualenv. Currently, AutoKeras is only compatible with Python >= 3.7 and TensorFlow >= 2.8.0. AutoKeras supports several tasks with extremely simple interface. AutoKeras would search for the best detailed configuration for you. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    GluonTS

    GluonTS

    Probabilistic time series modeling in Python

    GluonTS is a Python package for probabilistic time series modeling, focusing on deep learning based models. GluonTS requires Python 3.6 or newer, and the easiest way to install it is via pip. We train a DeepAR-model and make predictions using the simple "airpassengers" dataset. The dataset consists of a single time-series, containing monthly international passengers between the years 1949 and 1960, a total of 144 values (12 years * 12 months).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Pyro

    Pyro

    Deep universal probabilistic programming with Python and PyTorch

    Pyro is a flexible, universal probabilistic programming language (PPL) built on PyTorch. It allows for expressive deep probabilistic modeling, combining the best of modern deep learning and Bayesian modeling. Pyro is centered on four main principles: Universal, Scalable, Minimal and Flexible. Pyro is universal in that it can represent any computable probability distribution. It scales easily to large datasets with minimal overhead, and has a small yet powerful core of composable...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 17
    TorchIO

    TorchIO

    Medical imaging toolkit for deep learning

    ...TorchIO is a Python package containing a set of tools to efficiently read, preprocess, sample, augment, and write 3D medical images in deep learning applications written in PyTorch, including intensity and spatial transforms for data augmentation and preprocessing. Transforms include typical computer vision operations such as random affine transformations and also domain-specific ones such as simulation of intensity artifacts due to MRI magnetic field inhomogeneity.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 18
    AudioCraft

    AudioCraft

    Audiocraft is a library for audio processing and generation

    ...Both models operate over discrete audio tokens produced by a neural codec (EnCodec), which acts like a tokenizer for waveforms and enables efficient sequence modeling. The repo provides inference scripts, checkpoints, and simple Python APIs so you can generate clips from prompts or incorporate the models into applications. It also contains training code and recipes, so researchers can fine-tune on custom data or explore new objectives without building infrastructure from scratch. Example notebooks, CLI tools, and audio utilities help with prompt design, conditioning on reference audio, and post-processing to produce ready-to-share outputs.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 19
    Megatron

    Megatron

    Ongoing research training transformer models at scale

    Megatron is a large, powerful transformer developed by the Applied Deep Learning Research team at NVIDIA. This repository is for ongoing research on training large transformer language models at scale. We developed efficient, model-parallel (tensor, sequence, and pipeline), and multi-node pre-training of transformer based models such as GPT, BERT, and T5 using mixed precision. Megatron is also used in NeMo Megatron, a framework to help enterprises overcome the challenges of building and...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 20
    tvm

    tvm

    Open deep learning compiler stack for cpu, gpu, etc.

    ...The vision of the Apache TVM Project is to host a diverse community of experts and practitioners in machine learning, compilers, and systems architecture to build an accessible, extensible, and automated open-source framework that optimizes current and emerging machine learning models for any hardware platform. Compilation of deep learning models in Keras, MXNet, PyTorch, Tensorflow, CoreML, DarkNet and more. Start using TVM with Python today, build out production stacks using C++, Rust, or Java the next day.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 21
    PyTorch Geometric

    PyTorch Geometric

    Geometric deep learning extension library for PyTorch

    ...We have outsourced a lot of functionality of PyTorch Geometric to other packages, which needs to be additionally installed. These packages come with their own CPU and GPU kernel implementations based on C++/CUDA extensions. We do not recommend installation as root user on your system python. Please setup an Anaconda/Miniconda environment or create a Docker image. We provide pip wheels for all major OS/PyTorch/CUDA combinations.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 22
    Jittor

    Jittor

    Jittor is a high-performance deep learning framework

    ...Jittor also contains a wealth of high-performance model libraries, including image recognition, detection, segmentation, generation, differentiable rendering, geometric learning, reinforcement learning, etc. The front-end language is Python. Module Design and Dynamic Graph Execution is used in the front-end, which is the most popular design for deep learning framework interface. The back-end is implemented by high-performance languages, such as CUDA, C++. Jittor'op is similar to NumPy. Let's try some operations. We create Var a and b via operation jt.float32, and add them. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 23
    DeepSpeed MII

    DeepSpeed MII

    MII makes low-latency and high-throughput inference possible

    ...While open-sourcing has democratized access to AI capabilities, their application is still restricted by two critical factors: inference latency and cost. DeepSpeed-MII is a new open-source python library from DeepSpeed, aimed towards making low-latency, low-cost inference of powerful models not only feasible but also easily accessible. MII offers access to the highly optimized implementation of thousands of widely used DL models. MII-supported models achieve significantly lower latency and cost compared to their original implementation.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 24
    Transformers

    Transformers

    State-of-the-art Machine Learning for Pytorch, TensorFlow, and JAX

    ...Transformers provides APIs to quickly download and use those pretrained models on a given text, fine-tune them on your own datasets and then share them with the community on our model hub. At the same time, each python module defining an architecture is fully standalone and can be modified to enable quick research experiments.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 25
    HanLP

    HanLP

    Han Language Processing

    HanLP is a multilingual Natural Language Processing (NLP) library composed of a series of models and algorithms. Built on TensorFlow 2.0, it was designed to advance state-of-the-art deep learning techniques and popularize the application of natural language processing in both academia and industry. HanLP is capable of lexical analysis (Chinese word segmentation, part-of-speech tagging, named entity recognition), syntax analysis, text classification, and sentiment analysis. It comes with...
    Downloads: 3 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • 4
  • 5
  • Next