Showing 78 open source projects for "you-get"

View related business solutions
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • Free and Open Source HR Software Icon
    Free and Open Source HR Software

    OrangeHRM provides a world-class HRIS experience and offers everything you and your team need to be that HR hero you know that you are.

    Give your HR team the tools they need to streamline administrative tasks, support employees, and make informed decisions with the OrangeHRM free and open source HR software.
    Learn More
  • 1
    Thinc

    Thinc

    A refreshing functional take on deep learning

    Thinc is a lightweight deep learning library that offers an elegant, type-checked, functional-programming API for composing models, with support for layers defined in other frameworks such as PyTorch, TensorFlow and MXNet. You can use Thinc as an interface layer, a standalone toolkit or a flexible way to develop new models. Previous versions of Thinc have been running quietly in production in thousands of companies, via both spaCy and Prodigy. We wrote the new version to let users compose, configure and deploy custom models built with their favorite framework. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    Raster Vision

    Raster Vision

    Open source framework for deep learning satellite and aerial imagery

    ...The input to a Raster Vision pipeline is a set of images and training data, optionally with Areas of Interest (AOIs) that describe where the images are labeled. The output of a Raster Vision pipeline is a model bundle that allows you to easily utilize models in various deployment scenarios.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 3
    Rhino

    Rhino

    On-device Speech-to-Intent engine powered by deep learning

    ...Measure adoption, learn, and iterate. Continuously re-design and re-train to optimize engagement. Building accurate, responsive, and private voice technology is difficult. We learned the hard way, so you don’t have to. Picovoice heavily invests in R&D to offer superior voice AI that surpasses even Big Tech in accuracy and efficiency. Picovoice researchers do not follow recent frameworks and techniques but build them.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 4
    Determined

    Determined

    Determined, deep learning training platform

    ...Easily share on-premise or cloud GPUs with your team. Determined’s cluster scheduling offers first-class support for deep learning and seamless spot instance support. Check out examples of how you can use Determined to train popular deep learning models at scale.
    Downloads: 0 This Week
    Last Update:
    See Project
  • EHS Software and Management System Icon
    EHS Software and Management System

    ERA offers the only full EHS&Q platform with advanced automation to drive your complete compliance.

    ERA Environmental Software Solutions develops web-based EHS management software for small, medium, and large manufacturers needing to comply with federal, provincial, and state regulations, monitor their air, water, and waste emissions and other environmental outputs, author and manage Safety Data Sheets (SDS) in more than 40 languages, or standardize their Health and Safety procedures for incident and inspection tracking, training delivery, and audit management. The platform also supports comprehensive reporting for programs like TRI, Tier II, Title V, NEI, and NPRI. Companies across the automotive, aerospace, general manufacturing, and paints and coatings industries, to name a few, rely on ERA’s all-in-one, SOC 2 Type II certified SaaS for complete coverage of their EHS needs.
    Learn More
  • 5
    OpenVINO Training Extensions

    OpenVINO Training Extensions

    Trainable models and NN optimization tools

    OpenVINO™ Training Extensions provide a convenient environment to train Deep Learning models and convert them using the OpenVINO™ toolkit for optimized inference. When ote_cli is installed in the virtual environment, you can use the ote command line interface to perform various actions for templates related to the chosen task type, such as running, training, evaluating, exporting, etc. ote train trains a model (a particular model template) on a dataset and saves results in two files. ote optimize optimizes a pre-trained model using NNCF or POT depending on the model format. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Hivemind

    Hivemind

    Decentralized deep learning in PyTorch. Built to train models

    ...Decentralized parameter averaging: iteratively aggregate updates from multiple workers without the need to synchronize across the entire network. Train neural networks of arbitrary size: parts of their layers are distributed across the participants with the Decentralized Mixture-of-Experts. If you have succesfully trained a model or created a downstream repository with the help of our library, feel free to submit a pull request that adds your project to the list.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    PyTorch Geometric Temporal

    PyTorch Geometric Temporal

    Spatiotemporal Signal Processing with Neural Machine Learning Models

    ...It also comes with a number of benchmark datasets from the epidemiological forecasting, sharing economy, energy production and web traffic management domains. Finally, you can also create your own datasets. The package interfaces well with Pytorch Lightning which allows training on CPUs, single and multiple GPUs out-of-the-box. PyTorch Geometric Temporal makes implementing Dynamic and Temporal Graph Neural Networks quite easy - see the accompanying tutorial. Head over to our documentation to find out more about installation, creation of datasets and a full list of implemented methods and available datasets.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    DeepSpeed

    DeepSpeed

    Deep learning optimization library: makes distributed training easy

    DeepSpeed is an easy-to-use deep learning optimization software suite that enables unprecedented scale and speed for Deep Learning Training and Inference. With DeepSpeed you can: 1. Train/Inference dense or sparse models with billions or trillions of parameters 2. Achieve excellent system throughput and efficiently scale to thousands of GPUs 3. Train/Inference on resource constrained GPU systems 4. Achieve unprecedented low latency and high throughput for inference 5. Achieve extreme compression for an unparalleled inference latency and model size reduction with low costs DeepSpeed offers a confluence of system innovations, that has made large scale DL training effective, and efficient, greatly improved ease of use, and redefined the DL training landscape in terms of scale that is possible. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    pipeless

    pipeless

    A computer vision framework to create and deploy apps in minutes

    You can easily use industry-standard models, such as YOLO, or load your custom model in one of the supported inference runtimes. Pipeless ships some of the most popular inference runtimes, such as the ONNX Runtime, allowing you to run inference with high performance on CPU or GPU out-of-the-box. You can deploy your Pipeless application with a single command to edge and IoT devices or the cloud.
    Downloads: 0 This Week
    Last Update:
    See Project
  • AmpiFire Helps Brands Boost Sales and Traffic Icon
    AmpiFire Helps Brands Boost Sales and Traffic

    Content That Drives Sales For Your Business

    AmpiFire is a content creation and distribution solution that combines our talented 100+ person content writing team, AI and machine learning. We create, refine and distribute 6 content types to hundreds of websites and digital platforms. Each campaign consists of a News Article, Blog Post, Video, SlideShare, Infographic and an Audio Clip
    Learn More
  • 10
    Lightning-Hydra-Template

    Lightning-Hydra-Template

    PyTorch Lightning + Hydra. A very user-friendly template

    Convenient all-in-one technology stack for deep learning prototyping - allows you to rapidly iterate over new models, datasets and tasks on different hardware accelerators like CPUs, multi-GPUs or TPUs. A collection of best practices for efficient workflow and reproducibility. Thoroughly commented - you can use this repo as a reference and educational resource. Not fitted for data engineering - the template configuration setup is not designed for building data processing pipelines that depend on each other. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    D2L.ai

    D2L.ai

    Interactive deep learning book with multi-framework code

    ...Adopted at 300 universities from 55 countries including Stanford, MIT, Harvard, and Cambridge. This open-source book represents our attempt to make deep learning approachable, teaching you the concepts, the context, and the code. The entire book is drafted in Jupyter notebooks, seamlessly integrating exposition figures, math, and interactive examples with self-contained code. Offers sufficient technical depth to provide a starting point on the path to actually becoming an applied machine learning scientist.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 12
    Face Alignment

    Face Alignment

    2D and 3D Face alignment library build using pytorch

    ...While not required, for optimal performance(especially for the detector) it is highly recommended to run the code using a CUDA-enabled GPU. While here the work is presented as a black box, if you want to know more about the intrisecs of the method please check the original paper either on arxiv or my webpage.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 13
    TensorFlow Ranking

    TensorFlow Ranking

    Learning to rank in TensorFlow

    ...We envision that this library will provide a convenient open platform for hosting and advancing state-of-the-art ranking models based on deep learning techniques, and thus facilitate both academic research and industrial applications. We provide a demo, with no installation required, to get started on using TF-Ranking. This demo runs on a colaboratory notebook, an interactive Python environment. Using sparse features and embeddings in TF-Ranking.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 14
    Spektral

    Spektral

    Graph Neural Networks with Keras and Tensorflow 2

    Spektral is a Python library for graph deep learning, based on the Keras API and TensorFlow 2. The main goal of this project is to provide a simple but flexible framework for creating graph neural networks (GNNs). You can use Spektral for classifying the users of a social network, predicting molecular properties, generating new graphs with GANs, clustering nodes, predicting links, and any other task where data is described by graphs. Spektral implements some of the most popular layers for graph deep learning. Spektral also includes lots of utilities for representing, manipulating, and transforming graphs in your graph deep learning projects. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    DIG

    DIG

    A library for graph deep learning research

    The key difference with current graph deep learning libraries, such as PyTorch Geometric (PyG) and Deep Graph Library (DGL), is that, while PyG and DGL support basic graph deep learning operations, DIG provides a unified testbed for higher level, research-oriented graph deep learning tasks, such as graph generation, self-supervised learning, explainability, 3D graphs, and graph out-of-distribution. If you are working or plan to work on research in graph deep learning, DIG enables you to develop your own methods within our extensible framework, and compare with current baseline methods using common datasets and evaluation metrics without extra efforts. It includes unified implementations of data interfaces, common algorithms, and evaluation metrics for several advanced tasks. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    GPT-NeoX

    GPT-NeoX

    Implementation of model parallel autoregressive transformers on GPUs

    ...We aim to make this repo a centralized and accessible place to gather techniques for training large-scale autoregressive language models, and accelerate research into large-scale training. For those looking for a TPU-centric codebase, we recommend Mesh Transformer JAX. If you are not looking to train models with billions of parameters from scratch, this is likely the wrong library to use. For generic inference needs, we recommend you use the Hugging Face transformers library instead which supports GPT-NeoX models.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 17
    DeepCTR

    DeepCTR

    Package of deep-learning based CTR models

    DeepCTR is a Easy-to-use,Modular and Extendible package of deep-learning based CTR models along with lots of core components layers which can be used to easily build custom models. You can use any complex model with model.fit(), and model.predict(). Provide tf.keras.Model like interface for quick experiment. Provide tensorflow estimator interface for large scale data and distributed training. It is compatible with both tf 1.x and tf 2.x. With the great success of deep learning,DNN-based techniques have been widely used in CTR prediction task. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    AllenNLP

    AllenNLP

    An open-source NLP research library, built on PyTorch

    ...There is ecosystem of open source plugins, some of which are maintained by the AllenNLP team here at AI2, and some of which are maintained by the broader community. AllenNLP will automatically find any official AI2-maintained plugins that you have installed, but for AllenNLP to find personal or third-party plugins you've installed, you also have to create either a local plugins file named .allennlp_plugins in the directory where you run the allennlp command.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    OmicSelector

    OmicSelector

    Feature selection and deep learning modeling for omic biomarker study

    ...It was initially developed for miRNA-seq (small RNA, smRNA-seq; hence the name was miRNAselector), RNA-seq and qPCR, but can be applied for every problem where numeric features should be selected to counteract overfitting of the models. Using our tool, you can choose features, like miRNAs, with the most significant diagnostic potential (based on the results of miRNA-seq, for validation in qPCR experiments).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Elephas

    Elephas

    Distributed Deep learning with Keras & Spark

    Elephas is an extension of Keras, which allows you to run distributed deep learning models at scale with Spark. Elephas currently supports a number of applications. Elephas brings deep learning with Keras to Spark. Elephas intends to keep the simplicity and high usability of Keras, thereby allowing for fast prototyping of distributed models, which can be run on massive data sets.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Catalyst

    Catalyst

    Accelerated deep learning R&D

    Catalyst is a PyTorch framework for accelerated Deep Learning research and development. It allows you to write compact but full-featured Deep Learning pipelines with just a few lines of code. With Catalyst you get a full set of features including a training loop with metrics, model checkpointing and more, all without the boilerplate. Catalyst is focused on reproducibility, rapid experimentation, and codebase reuse so you can break the cycle of writing another regular train loop and make something totally new. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 22
    YOLOv3

    YOLOv3

    Object detection architectures and models pretrained on the COCO data

    Fast, precise and easy to train, YOLOv5 has a long and successful history of real time object detection. Treat YOLOv5 as a university where you'll feed your model information for it to learn from and grow into one integrated tool. You can get started with less than 6 lines of code. with YOLOv5 and its Pytorch implementation. Have a go using our API by uploading your own image and watch as YOLOv5 identifies objects using our pretrained models. Start training your model without being an expert. Students love YOLOv5 for its simplicity and there are many quickstart examples for you to get started within seconds. ...
    Downloads: 112 This Week
    Last Update:
    See Project
  • 23
    LayoutParser

    LayoutParser

    A Unified Toolkit for Deep Learning Based Document Image Analysis

    ...After several major updates, layoutparser provides various functionalities and deep learning models from different backends. But it still easy to install layoutparser, and we designed the installation method in a way such that you can choose to install only the needed dependencies for your project. LayoutParser is also a open platform that enables the sharing of layout detection models and DIA pipelines among the community.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Deep Daze

    Deep Daze

    Simple command line tool for text to image generation

    ...The regular mode for texts only allows 77 tokens. If you want to visualize a full story/paragraph/song/poem, set create_story to True.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Interactive Deep Colorization

    Interactive Deep Colorization

    Deep learning software for colorizing black and white images

    Interactive Deep Colorization is a software project for colorizing black-and-white (grayscale) images using deep learning, allowing users to add a few hints (e.g. scribbles) and get a plausible, fully colorized output. The idea is to merge automatic colorization (via neural networks) with optional user guidance — so if the automatic model’s guess isn’t quite right, the user can nudge colors via hints to steer the result, achieving more controlled, satisfying outputs. The project includes both the older Caffe-based implementation and a more recent PyTorch backend, giving flexibility depending on user preference and infrastructure. ...
    Downloads: 0 This Week
    Last Update:
    See Project