• Find Hidden Risks in Windows Task Scheduler Icon
    Find Hidden Risks in Windows Task Scheduler

    Free diagnostic script reveals configuration issues, error patterns, and security risks. Instant HTML report.

    Windows Task Scheduler might be hiding critical failures. Download the free JAMS diagnostic tool to uncover problems before they impact production—get a color-coded risk report with clear remediation steps in minutes.
    Download Free Tool
  • Retool your internal operations Icon
    Retool your internal operations

    Generate secure, production-grade apps that connect to your business data. Not just prototypes, but tools your team can actually deploy.

    Build internal software that meets enterprise security standards without waiting on engineering resources. Retool connects to your databases, APIs, and data sources while maintaining the permissions and controls you need. Create custom dashboards, admin tools, and workflows from natural language prompts—all deployed in your cloud with security baked in. Stop duct-taping operations together, start building in Retool.
    Build an app in Retool
  • 1
    MATLAB Deep Learning Model Hub

    MATLAB Deep Learning Model Hub

    Discover pretrained models for deep learning in MATLAB

    ...Pretrained image classification networks have already learned to extract powerful and informative features from natural images. Use them as a starting point to learn a new task using transfer learning. Inputs are RGB images, the output is the predicted label and score.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    Exposure Correction

    Exposure Correction

    Learning multi-scale deep model correcting over- and under- exposed

    Exposure_Correction is a research project that provides the implementation for the paper Learning Multi-Scale Photo Exposure Correction (CVPR 2021). The repository focuses on correcting poorly exposed photographs, handling both underexposure and overexposure using a deep learning approach. The method employs a multi-scale framework that learns to enhance images by adjusting exposure levels across different spatial resolutions. This allows the model to preserve fine details while correcting global lighting inconsistencies. The repository includes pre-trained models, datasets, and training/testing code to enable reproducibility and experimentation. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 3
    Spheroid_segmentation

    Spheroid_segmentation

    Deep learning networks for spheroid segmentation

    ...The code provides the trained networks based on Vgg16, Vgg19, ResNet18, and ResNet50 ready to be used for segmentation purposes. It also provides Matlab functions ready to be used to train new networks, segment new images, and measure the quality of the training using different quantitative parameters.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Robust Tube MPC

    Robust Tube MPC

    Example implementation for robust model predictive control using tube

    robust-tube-mpc is a MATLAB implementation of robust tube-based Model Predictive Control (MPC). The framework provides tools to design and simulate controllers that maintain stability and constraint satisfaction in the presence of bounded disturbances. Tube-based MPC achieves robustness by combining a nominal trajectory planner with an error feedback controller that keeps the actual system state within a "tube" around the nominal trajectory. This repository includes example scripts and...
    Downloads: 3 This Week
    Last Update:
    See Project
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 5
    Detect and Track

    Detect and Track

    Code release for "Detect to Track and Track to Detect", ICCV 2017

    ...The framework unifies object detection and tracking into a single pipeline, allowing detection to support tracking and tracking to enhance detection performance. Built upon a modified version of R-FCN, the code provides implementations using backbone networks such as ResNet-50, ResNet-101, ResNeXt-101, and Inception-v4, with results demonstrating state-of-the-art accuracy on the ImageNet VID dataset. The repository includes MATLAB-based training and testing scripts, along with pre-trained models and pre-computed region proposals for reproducibility. Multiple testing configurations are available, including multi-frame input and enhanced versions that refine tracking boxes and integrate detection confidence across frames.
    Downloads: 3 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next