MATLAB Deep Learning Frameworks

View 107 business solutions

Browse free open source MATLAB Deep Learning Frameworks and projects below. Use the toggles on the left to filter open source MATLAB Deep Learning Frameworks by OS, license, language, programming language, and project status.

  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    Detect and Track

    Detect and Track

    Code release for "Detect to Track and Track to Detect", ICCV 2017

    Detect-Track is the official implementation of the ICCV 2017 paper Detect to Track and Track to Detect by Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman. The framework unifies object detection and tracking into a single pipeline, allowing detection to support tracking and tracking to enhance detection performance. Built upon a modified version of R-FCN, the code provides implementations using backbone networks such as ResNet-50, ResNet-101, ResNeXt-101, and Inception-v4, with results demonstrating state-of-the-art accuracy on the ImageNet VID dataset. The repository includes MATLAB-based training and testing scripts, along with pre-trained models and pre-computed region proposals for reproducibility. Multiple testing configurations are available, including multi-frame input and enhanced versions that refine tracking boxes and integrate detection confidence across frames.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 2
    Exposure Correction
    Exposure_Correction is a research project that provides the implementation for the paper Learning Multi-Scale Photo Exposure Correction (CVPR 2021). The repository focuses on correcting poorly exposed photographs, handling both underexposure and overexposure using a deep learning approach. The method employs a multi-scale framework that learns to enhance images by adjusting exposure levels across different spatial resolutions. This allows the model to preserve fine details while correcting global lighting inconsistencies. The repository includes pre-trained models, datasets, and training/testing code to enable reproducibility and experimentation. By leveraging this framework, researchers and developers can apply exposure correction to a wide range of natural images, improving visual quality without manual editing. The project serves both as a research reference and a practical tool for computational photography and image enhancement.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 3
    MatlabFunc

    MatlabFunc

    Matlab codes for feature learning

    MatlabFunc is a collection of MATLAB functions developed by the ZJULearning group to support various tasks in computer vision, machine learning, and numerical computation. The repository brings together a wide range of utility scripts, algorithms, and implementations that serve as building blocks for research and development. These functions cover areas such as matrix operations, optimization, data processing, and visualization, making them broadly applicable across different research domains. The project is intended to provide reusable and adaptable MATLAB code that can save time for researchers and students working on experimental or applied projects. By consolidating these tools in one place, MatlabFunc serves as a practical reference and toolkit for both academic and engineering purposes. Contributions and improvements from the community are encouraged, allowing the repository to grow into a richer resource over time.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 4
    Robust Tube MPC

    Robust Tube MPC

    Example implementation for robust model predictive control using tube

    robust-tube-mpc is a MATLAB implementation of robust tube-based Model Predictive Control (MPC). The framework provides tools to design and simulate controllers that maintain stability and constraint satisfaction in the presence of bounded disturbances. Tube-based MPC achieves robustness by combining a nominal trajectory planner with an error feedback controller that keeps the actual system state within a "tube" around the nominal trajectory. This repository includes example scripts and implementations demonstrating how to apply the method to control problems. It is particularly useful for researchers, students, and engineers exploring robust control strategies in uncertain environments. By offering a structured implementation, robust-tube-mpc makes it easier to study and extend advanced MPC techniques for real-world applications.
    Downloads: 2 This Week
    Last Update:
    See Project
  • Build Securely on AWS with Proven Frameworks Icon
    Build Securely on AWS with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 5
    Large Language Models (LLMs)

    Large Language Models (LLMs)

    Connect MATLAB to LLM APIs, including OpenAI® Chat Completions

    This repository enables MATLAB to connect with large language models (LLMs) such as OpenAI's ChatGPT, DALL-E, Azure OpenAI, and Ollama, integrating their natural language processing and image generation capabilities directly within MATLAB environments. It facilitates creating chatbots, summarizing text, and image generation, among other tasks.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 6
    MATLAB Deep Learning Model Hub

    MATLAB Deep Learning Model Hub

    Discover pretrained models for deep learning in MATLAB

    Discover pre-trained models for deep learning in MATLAB. Pretrained image classification networks have already learned to extract powerful and informative features from natural images. Use them as a starting point to learn a new task using transfer learning. Inputs are RGB images, the output is the predicted label and score.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    CometAnalyser

    CometAnalyser

    CometAnalyser, for quantitative comet assay analysis.

    Description: Comet assay provides an easy solution to estimate DNA damage in single cells through microscopy assessment. To obtain reproducible and reliable quantitative data, we developed an easy-to-use tool named CometAnalyser. CometAnalyser is an open-source deep-learning tool designed for the analysis of both fluorescent and silver-stained wide-field microscopy images. Once the comets are segmented and classified, several intensity/morphological features are automatically exported as a spreadsheet file. Video Tutorial: CometAnalyser is written in MATLAB. It works with Windows, Macintosh, and UNIX-based systems. Please, download the sample datasets and test it watching the video tutorial to understand how it works: https://www.youtube.com/watch?v=vh2VFnMw50A Contacts: filippo.piccinini85@gmail.com beleonattila@gmail.com
    Downloads: 19 This Week
    Last Update:
    See Project
  • 8
    Spheroid_segmentation

    Spheroid_segmentation

    Deep learning networks for spheroid segmentation

    To accelerate the analysis of tumors' spheroids, different deep learning networks were trained to automatize the segmentation process. The code provides the trained networks based on Vgg16, Vgg19, ResNet18, and ResNet50 ready to be used for segmentation purposes. It also provides Matlab functions ready to be used to train new networks, segment new images, and measure the quality of the training using different quantitative parameters.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.