Showing 4 open source projects for "using class net.sourceforge.jtds.jdbc.driver"

View related business solutions
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    Build gen AI apps with an all-in-one modern database: MongoDB Atlas

    MongoDB Atlas provides built-in vector search and a flexible document model so developers can build, scale, and run gen AI apps without stitching together multiple databases. From LLM integration to semantic search, Atlas simplifies your AI architecture—and it’s free to get started.
    Start Free
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    Determined

    Determined

    Determined, deep learning training platform

    ...Build more accurate models faster with scalable hyperparameter search, seamlessly orchestrated by Determined. Use state-of-the-art algorithms and explore results with our hyperparameter search visualizations. Interpret your experiment results using the Determined UI and TensorBoard, and reproduce experiments with artifact tracking. Deploy your model using Determined's built-in model registry. Easily share on-premise or cloud GPUs with your team. Determined’s cluster scheduling offers first-class support for deep learning and seamless spot instance support. Check out examples of how you can use Determined to train popular deep learning models at scale.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    DeepChem

    DeepChem

    Democratizing Deep-Learning for Drug Discovery, Quantum Chemistry, etc

    DeepChem aims to provide a high-quality open-source toolchain that democratizes the use of deep learning in drug discovery, materials science, quantum chemistry, and biology. DeepChem currently supports Python 3.7 through 3.9 and requires these packages on any condition. DeepChem has a number of "soft" requirements. If you face some errors like ImportError: This class requires XXXX, you may need to install some packages. Deepchem provides support for TensorFlow, PyTorch, JAX and each...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Elephas

    Elephas

    Distributed Deep learning with Keras & Spark

    ...Elephas intends to keep the simplicity and high usability of Keras, thereby allowing for fast prototyping of distributed models, which can be run on massive data sets. Elephas implements a class of data-parallel algorithms on top of Keras, using Spark's RDDs and data frames. Keras Models are initialized on the driver, then serialized and shipped to workers, alongside with data and broadcasted model parameters. Spark workers deserialize the model, train their chunk of data and send their gradients back to the driver. The "master" model on the driver is updated by an optimizer, which takes gradients either synchronously or asynchronously. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    SINGA

    SINGA

    A distributed deep learning platform

    ...SINGA records the computation graph and applies the backward propagation automatically after forward propagation. The optimization of memory are implemented in the Device class. SINGA supports loading ONNX format models and saving models defined using SINGA APIs into ONNX format, which enables AI developers to use models across different libraries and tools. SINGA supports the time profiling of each of the operators buffered in the graph. Half precision is supported to bring benefits.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Build Securely on AWS with Proven Frameworks Icon
    Build Securely on AWS with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • Previous
  • You're on page 1
  • Next