Showing 19 open source projects for "there is no way to"

View related business solutions
  • Red Hat Enterprise Linux on Microsoft Azure Icon
    Red Hat Enterprise Linux on Microsoft Azure

    Deploy Red Hat Enterprise Linux on Microsoft Azure for a secure, reliable, and scalable cloud environment, fully integrated with Microsoft services.

    Red Hat Enterprise Linux (RHEL) on Microsoft Azure provides a secure, reliable, and flexible foundation for your cloud infrastructure. Red Hat Enterprise Linux on Microsoft Azure is ideal for enterprises seeking to enhance their cloud environment with seamless integration, consistent performance, and comprehensive support.
    Learn More
  • The #1 Embedded Analytics Solution for SaaS Teams. Icon
    The #1 Embedded Analytics Solution for SaaS Teams.

    Qrvey saves engineering teams time and money with a turnkey multi-tenant solution connecting your data warehouse to your SaaS application.

    Qrvey’s comprehensive embedded analytics software enables you to design more customizable analytics experiences for your end users.
    Try Developer Playground
  • 1
    Ludwig

    Ludwig

    A codeless platform to train and test deep learning models

    Ludwig is a toolbox built on top of TensorFlow that allows to train and test deep learning models without the need to write code. All you need to provide is a CSV file containing your data, a list of columns to use as inputs, and a list of columns to use as outputs, Ludwig will do the rest. Simple commands can be used to train models both locally and in a distributed way, and to use them to predict on new data.
    Downloads: 8 This Week
    Last Update:
    See Project
  • 2
    Thinc

    Thinc

    A refreshing functional take on deep learning

    Thinc is a lightweight deep learning library that offers an elegant, type-checked, functional-programming API for composing models, with support for layers defined in other frameworks such as PyTorch, TensorFlow and MXNet. You can use Thinc as an interface layer, a standalone toolkit or a flexible way to develop new models. Previous versions of Thinc have been running quietly in production in thousands of companies, via both spaCy and Prodigy. We wrote the new version to let users compose...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 3
    PyTorch/XLA

    PyTorch/XLA

    Enabling PyTorch on Google TPU

    ... and easier access to the TPU hardware. This is our recommedned way of running PyTorch/XLA on Cloud TPU. Please check out our Cloud TPU VM User Guide. Cloud TPU VM is currently on general availability and provides direct access to the TPU host. The recommended setup for running distributed training on TPU Pods uses the pairing of Compute VM Instance Groups and TPU Pods. Each of the Compute VM in the instance group drives 8 cores on the TPU Pod.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Lightly

    Lightly

    A python library for self-supervised learning on images

    ... through advanced filtering. We provide PyTorch, PyTorch Lightning and PyTorch Lightning distributed examples for each of the models to kickstart your project. Lightly requires Python 3.6+ but we recommend using Python 3.7+. We recommend installing Lightly in a Linux or OSX environment. With lightly, you can use the latest self-supervised learning methods in a modular way using the full power of PyTorch. Experiment with different backbones, models, and loss functions.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Deliver secure remote access with OpenVPN. Icon
    Deliver secure remote access with OpenVPN.

    Trusted by nearly 20,000 customers worldwide, and all major cloud providers.

    OpenVPN's products provide scalable, secure remote access — giving complete freedom to your employees to work outside the office while securely accessing SaaS, the internet, and company resources.
    Get started — no credit card required.
  • 5
    Determined

    Determined

    Determined, deep learning training platform

    The fastest and easiest way to build deep learning models. Distributed training without changing your model code. Determined takes care of provisioning machines, networking, data loading, and fault tolerance. Build more accurate models faster with scalable hyperparameter search, seamlessly orchestrated by Determined. Use state-of-the-art algorithms and explore results with our hyperparameter search visualizations. Interpret your experiment results using the Determined UI and TensorBoard...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    GluonTS

    GluonTS

    Probabilistic time series modeling in Python

    GluonTS is a Python package for probabilistic time series modeling, focusing on deep learning based models. GluonTS requires Python 3.6 or newer, and the easiest way to install it is via pip. We train a DeepAR-model and make predictions using the simple "airpassengers" dataset. The dataset consists of a single time-series, containing monthly international passengers between the years 1949 and 1960, a total of 144 values (12 years * 12 months). We split the dataset into train and test parts...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Darts

    Darts

    A python library for easy manipulation and forecasting of time series

    darts is a Python library for easy manipulation and forecasting of time series. It contains a variety of models, from classics such as ARIMA to deep neural networks. The models can all be used in the same way, using fit() and predict() functions, similar to scikit-learn. The library also makes it easy to backtest models, combine the predictions of several models, and take external data into account. Darts supports both univariate and multivariate time series and models. The ML-based models can...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    AWS Neuron

    AWS Neuron

    Powering Amazon custom machine learning chips

    AWS Neuron is a software development kit (SDK) for running machine learning inference using AWS Inferentia chips. It consists of a compiler, run-time, and profiling tools that enable developers to run high-performance and low latency inference using AWS Inferentia-based Amazon EC2 Inf1 instances. Using Neuron developers can easily train their machine learning models on any popular framework such as TensorFlow, PyTorch, and MXNet, and run it optimally on Amazon EC2 Inf1 instances. You can...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    T81 558

    T81 558

    Applications of Deep Neural Networks

    Deep learning is a group of exciting new technologies for neural networks. Through a combination of advanced training techniques and neural network architectural components, it is now possible to create neural networks that can handle tabular data, images, text, and audio as both input and output. Deep learning allows a neural network to learn hierarchies of information in a way that is like the function of the human brain. This course will introduce the student to classic neural network...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Payroll Services for Small Businesses | QuickBooks Icon
    Payroll Services for Small Businesses | QuickBooks

    Save up to 50% on QuickBooks Online! Keep the Accounting and Book Keeping for your Small Business up to date!

    Easily pay your team and access powerful tools, employee benefits, and supportive experts with the #1 online payroll service provider. Manage payroll and access HR and employee services in one place. Pay your team automatically once your payroll setup is complete. We'll calculate, file, and pay your payroll taxes automatically.
    Learn More
  • 10
    fastai

    fastai

    Deep learning library

    fastai is a deep learning library which provides practitioners with high-level components that can quickly and easily provide state-of-the-art results in standard deep learning domains, and provides researchers with low-level components that can be mixed and matched to build new approaches. It aims to do both things without substantial compromises in ease of use, flexibility, or performance. This is possible thanks to a carefully layered architecture, which expresses common underlying...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    AllenNLP

    AllenNLP

    An open-source NLP research library, built on PyTorch

    AllenNLP makes it easy to design and evaluate new deep learning models for nearly any NLP problem, along with the infrastructure to easily run them in the cloud or on your laptop. AllenNLP includes reference implementations of high quality models for both core NLP problems (e.g. semantic role labeling) and NLP applications (e.g. textual entailment). AllenNLP supports loading "plugins" dynamically. A plugin is just a Python package that provides custom registered classes or additional...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 12
    AirSim

    AirSim

    A simulator for drones, cars and more, built on Unreal Engine

    ... a platform for AI research to experiment with deep learning, computer vision and reinforcement learning algorithms for autonomous vehicles. For this purpose, AirSim also exposes APIs to retrieve data and control vehicles in a platform independent way. AirSim is fully enabled for multiple vehicles. This capability allows you to create multiple vehicles easily and use APIs to control them.
    Downloads: 46 This Week
    Last Update:
    See Project
  • 13
    Hello AI World

    Hello AI World

    Guide to deploying deep-learning inference networks

    Hello AI World is a great way to start using Jetson and experiencing the power of AI. In just a couple of hours, you can have a set of deep learning inference demos up and running for realtime image classification and object detection on your Jetson Developer Kit with JetPack SDK and NVIDIA TensorRT. The tutorial focuses on networks related to computer vision, and includes the use of live cameras. You’ll also get to code your own easy-to-follow recognition program in Python or C++, and train...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 14
    LayoutParser

    LayoutParser

    A Unified Toolkit for Deep Learning Based Document Image Analysis

    .... After several major updates, layoutparser provides various functionalities and deep learning models from different backends. But it still easy to install layoutparser, and we designed the installation method in a way such that you can choose to install only the needed dependencies for your project. LayoutParser is also a open platform that enables the sharing of layout detection models and DIA pipelines among the community.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    MELAGE
    ... the localization of the regions of interest. It has been developed in Python with a user-friendly interface for healthcare personnel. Thanks to Artificial Intelligence and deep learning methods, MELAGE has tools to estimate volumes of different regions of interest in both images. Moreover, it allows to perform linear, area and volumetric measurements in a very intuitive and easy way, being able to instantly see the segmented region in a new tab. Please see https://melage.uca.es/
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Detectron2

    Detectron2

    Next-generation platform for object detection and segmentation

    ... source more research projects in this way. It trains much faster. Models can be exported to TorchScript format or Caffe2 format for deployment. With a new, more modular design, Detectron2 is flexible and extensible, and able to provide fast training on single or multiple GPU servers. Detectron2 includes high-quality implementations of state-of-the-art object detection.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Deep Learning with Keras and Tensorflow

    Deep Learning with Keras and Tensorflow

    Introduction to Deep Neural Networks with Keras and Tensorflow

    ... in the development version). The goal of libgpuarray is (from the documentation) make a common GPU ndarray (n dimensions array) that can be reused by all projects that is as future proof as possible, while keeping it easy to use for simple need/quick test. The easiest way to get (most) these is to use an all-in-one installer such as Anaconda from Continuum. These are available for multiple architectures.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 18
    Caffe2

    Caffe2

    Caffe2 is a lightweight, modular, and scalable deep learning framework

    Caffe2 is a lightweight, modular, and scalable deep learning framework. Building on the original Caffe, Caffe2 is designed with expression, speed, and modularity in mind. Caffe2 is a deep learning framework that provides an easy and straightforward way for you to experiment with deep learning and leverage community contributions of new models and algorithms. You can bring your creations to scale using the power of GPUs in the cloud or to the masses on mobile with Caffe2’s cross-platform...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Rhino

    Rhino

    On-device Speech-to-Intent engine powered by deep learning

    ..., on-premise, or cloud. Measure adoption, learn, and iterate. Continuously re-design and re-train to optimize engagement. Building accurate, responsive, and private voice technology is difficult. We learned the hard way, so you don’t have to. Picovoice heavily invests in R&D to offer superior voice AI that surpasses even Big Tech in accuracy and efficiency. Picovoice researchers do not follow recent frameworks and techniques but build them.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next