Showing 2 open source projects for "pixels."

View related business solutions
  • Vibes don’t ship, Retool does Icon
    Vibes don’t ship, Retool does

    Start from a prompt and build production-ready apps on your data—with security, permissions, and compliance built in.

    Vibe coding tools create cool demos, but Retool helps you build software your company can actually use. Generate internal apps that connect directly to your data—deployed in your cloud with enterprise security from day one. Build dashboards, admin panels, and workflows with granular permissions already in place. Stop prototyping and ship on a platform that actually passes security review.
    Build apps that ship
  • Find Hidden Risks in Windows Task Scheduler Icon
    Find Hidden Risks in Windows Task Scheduler

    Free diagnostic script reveals configuration issues, error patterns, and security risks. Instant HTML report.

    Windows Task Scheduler might be hiding critical failures. Download the free JAMS diagnostic tool to uncover problems before they impact production—get a color-coded risk report with clear remediation steps in minutes.
    Download Free Tool
  • 1
    JEPA

    JEPA

    PyTorch code and models for V-JEPA self-supervised learning from video

    JEPA (Joint-Embedding Predictive Architecture) captures the idea of predicting missing high-level representations rather than reconstructing pixels, aiming for robust, scalable self-supervised learning. A context encoder ingests visible regions and predicts target embeddings for masked regions produced by a separate target encoder, avoiding low-level reconstruction losses that can overfit to texture. This makes learning focus on semantics and structure, yielding features that transfer well with simple linear probes and minimal fine-tuning. ...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 2
    vJEPA-2

    vJEPA-2

    PyTorch code and models for VJEPA2 self-supervised learning from video

    VJEPA2 is a next-generation self-supervised learning framework for video that extends the “predict in representation space” idea from i-JEPA to the temporal domain. Instead of reconstructing pixels, it predicts the missing high-level embeddings of masked space-time regions using a context encoder and a slowly updated target encoder. This objective encourages the model to learn semantics, motion, and long-range structure without the shortcuts that pixel-level losses can invite. The architecture is designed to scale: spatiotemporal ViT backbones, flexible masking schedules, and efficient sampling let it train on long clips while remaining stable. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next