Showing 9 open source projects for "learning vector quantization"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Automate contact and company data extraction Icon
    Automate contact and company data extraction

    Build lead generation pipelines that pull emails, phone numbers, and company details from directories, maps, social platforms. Full API access.

    Generate leads at scale without building or maintaining scrapers. Use 10,000+ ready-made tools that handle authentication, pagination, and anti-bot protection. Pull data from business directories, social profiles, and public sources, then export to your CRM or database via API. Schedule recurring extractions, enrich existing datasets, and integrate with your workflows.
    Explore Apify Store
  • 1
    Vearch

    Vearch

    A distributed system for embedding-based vector retrieval

    Vearch is the vector search infrastructure for deep learning and AI applications. Vearch is a distributed vector storage and retrieval system which can be easily extended to billions scale. Vearch implements a high-performance, lockless real-time vector indexing subsystem that utilizes various optimization techniques to support millisecond vector update and retrieval.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    DLRM

    DLRM

    An implementation of a deep learning recommendation model (DLRM)

    ...The implementation is optimized for performance at scale, supporting multi-GPU and multi-node execution, quantization, embedding partitioning, and pipelined I/O to feed huge embeddings efficiently. It includes data loaders for standard benchmarks (like Criteo), training scripts, evaluation tools, and capabilities like mixed precision, gradient compression, and memory fusion to maximize throughput.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 3
    dlib

    dlib

    Toolkit for making machine learning and data analysis applications

    Dlib is a modern C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real world problems. It is used in both industry and academia in a wide range of domains including robotics, embedded devices, mobile phones, and large high performance computing environments. Dlib's open source licensing allows you to use it in any application, free of charge. Good unit test coverage, the ratio of unit test lines of code to library lines of code is...
    Downloads: 20 This Week
    Last Update:
    See Project
  • 4
    MegEngine

    MegEngine

    Easy-to-use deep learning framework with 3 key features

    MegEngine is a fast, scalable and easy-to-use deep learning framework with 3 key features. You can represent quantization/dynamic shape/image pre-processing and even derivation in one model. After training, just put everything into your model and inference it on any platform at ease. Speed and precision problems won't bother you anymore due to the same core inside. In training, GPU memory usage could go down to one-third at the cost of only one additional line, which enables the DTR algorithm. ...
    Downloads: 4 This Week
    Last Update:
    See Project
  • G-P - Global EOR Solution Icon
    G-P - Global EOR Solution

    Companies searching for an Employer of Record solution to mitigate risk and manage compliance, taxes, benefits, and payroll anywhere in the world

    With G-P's industry-leading Employer of Record (EOR) and Contractor solutions, you can hire, onboard and manage teams in 180+ countries — quickly and compliantly — without setting up entities.
    Learn More
  • 5
    DocArray

    DocArray

    The data structure for multimodal data

    ...Data in transit: optimized for network communication, ready-to-wire at anytime with fast and compressed serialization in Protobuf, bytes, base64, JSON, CSV, DataFrame. Perfect for streaming and out-of-memory data. One-stop k-NN: Unified and consistent API for mainstream vector databases.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Jina

    Jina

    Build cross-modal and multimodal applications on the cloud

    Jina is a framework that empowers anyone to build cross-modal and multi-modal applications on the cloud. It uplifts a PoC into a production-ready service. Jina handles the infrastructure complexity, making advanced solution engineering and cloud-native technologies accessible to every developer. Build applications that deliver fresh insights from multiple data types such as text, image, audio, video, 3D mesh, PDF with Jina AI’s DocArray. Polyglot gateway that supports gRPC, Websockets, HTTP,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    DeepSpeed MII

    DeepSpeed MII

    MII makes low-latency and high-throughput inference possible

    MII makes low-latency and high-throughput inference possible, powered by DeepSpeed. The Deep Learning (DL) open-source community has seen tremendous growth in the last few months. Incredibly powerful text generation models such as the Bloom 176B, or image generation model such as Stable Diffusion are now available to anyone with access to a handful or even a single GPU through platforms such as Hugging Face. While open-sourcing has democratized access to AI capabilities, their application is...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 8
    NNVM

    NNVM

    Open deep learning compiler stack for cpu, gpu

    The vision of the Apache NNVM Project is to host a diverse community of experts and practitioners in machine learning, compilers, and systems architecture to build an accessible, extensible, and automated open-source framework that optimizes current and emerging machine learning models for any hardware platform. Compilation of deep learning models into minimum deployable modules. Infrastructure to automatically generates and optimize models on more backend with better performance. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Swift AI

    Swift AI

    The Swift machine learning library

    Swift AI is a high-performance deep learning library written entirely in Swift. We currently offer support for all Apple platforms, with Linux support coming soon. Swift AI includes a collection of common tools used for artificial intelligence and scientific applications. A flexible, fully-connected neural network with support for deep learning. Optimized specifically for Apple hardware, using advanced parallel processing techniques.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Create and run cloud-based virtual machines. Icon
    Create and run cloud-based virtual machines.

    Secure and customizable compute service that lets you create and run virtual machines.

    Computing infrastructure in predefined or custom machine sizes to accelerate your cloud transformation. General purpose (E2, N1, N2, N2D) machines provide a good balance of price and performance. Compute optimized (C2) machines offer high-end vCPU performance for compute-intensive workloads. Memory optimized (M2) machines offer the highest memory and are great for in-memory databases. Accelerator optimized (A2) machines are based on the A100 GPU, for very demanding applications.
    Try for free
  • Previous
  • You're on page 1
  • Next