Showing 8 open source projects for "kernel"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Free and Open Source HR Software Icon
    Free and Open Source HR Software

    OrangeHRM provides a world-class HRIS experience and offers everything you and your team need to be that HR hero you know that you are.

    Give your HR team the tools they need to streamline administrative tasks, support employees, and make informed decisions with the OrangeHRM free and open source HR software.
    Learn More
  • 1
    Burn

    Burn

    Burn is a new comprehensive dynamic Deep Learning Framework

    Burn is a new comprehensive dynamic Deep Learning Framework built using Rust with extreme flexibility, compute efficiency and portability as its primary goals. Burn emphasizes performance, flexibility, and portability for both training and inference. Developed in Rust, it is designed to empower machine learning engineers and researchers across industry and academia.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    dlib

    dlib

    Toolkit for making machine learning and data analysis applications

    Dlib is a modern C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real world problems. It is used in both industry and academia in a wide range of domains including robotics, embedded devices, mobile phones, and large high performance computing environments. Dlib's open source licensing allows you to use it in any application, free of charge. Good unit test coverage, the ratio of unit test lines of code to library lines of code is...
    Downloads: 10 This Week
    Last Update:
    See Project
  • 3
    PyTorch Geometric

    PyTorch Geometric

    Geometric deep learning extension library for PyTorch

    ...We have outsourced a lot of functionality of PyTorch Geometric to other packages, which needs to be additionally installed. These packages come with their own CPU and GPU kernel implementations based on C++/CUDA extensions. We do not recommend installation as root user on your system python. Please setup an Anaconda/Miniconda environment or create a Docker image. We provide pip wheels for all major OS/PyTorch/CUDA combinations.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 4
    oneDNN

    oneDNN

    oneAPI Deep Neural Network Library (oneDNN)

    This software was previously known as Intel(R) Math Kernel Library for Deep Neural Networks (Intel(R) MKL-DNN) and Deep Neural Network Library (DNNL). oneAPI Deep Neural Network Library (oneDNN) is an open-source cross-platform performance library of basic building blocks for deep learning applications. oneDNN is part of oneAPI. The library is optimized for Intel(R) Architecture Processors, Intel Processor Graphics and Xe Architecture graphics. oneDNN has experimental support for the following architectures: Arm* 64-bit Architecture (AArch64), NVIDIA* GPU, OpenPOWER* Power ISA (PPC64), IBMz* (s390x), and RISC-V. oneDNN is intended for deep learning applications and framework developers interested in improving application performance on Intel CPUs and GPUs. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • The Simple HR Solution Icon
    The Simple HR Solution

    HR Partner is a simple, all-inclusive online HR Management system for businesses with 20 to 500+ employees.

    Say goodbye to messy spreadsheets and paperwork – get the HR tools large companies use, without the big price tag
    Learn More
  • 5
    MLPACK is a C++ machine learning library with emphasis on scalability, speed, and ease-of-use. Its aim is to make machine learning possible for novice users by means of a simple, consistent API, while simultaneously exploiting C++ language features to provide maximum performance and flexibility for expert users. * More info + downloads: https://mlpack.org * Git repo: https://github.com/mlpack/mlpack
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Awesome Graph Classification

    Awesome Graph Classification

    Graph embedding, classification and representation learning papers

    A collection of graph classification methods, covering embedding, deep learning, graph kernel and factorization papers with reference implementations. Relevant graph classification benchmark datasets are available. Similar collections about community detection, classification/regression tree, fraud detection, Monte Carlo tree search, and gradient boosting papers with implementations.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Intel neon

    Intel neon

    Intel® Nervana™ reference deep learning framework

    ...Designed for ease of use and extensibility. See the new features in our latest release. We want to highlight that neon v2.0.0+ has been optimized for much better performance on CPUs by enabling Intel Math Kernel Library (MKL). The DNN (Deep Neural Networks) component of MKL that is used by neon is provided free of charge and downloaded automatically as part of the neon installation. The gpu backend is selected by default, so the above command is equivalent to if a compatible GPU resource is found on the system. The Intel Math Kernel Library takes advantages of the parallelization and vectorization capabilities of Intel Xeon and Xeon Phi systems. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Convolution arithmetic

    Convolution arithmetic

    A technical report on convolution arithmetic in deep learning

    ...We introduce a guide to help deep learning practitioners understand and manipulate convolutional neural network architectures. The guide clarifies the relationship between various properties (input shape, kernel shape, zero padding, strides and output shape) of convolutional, pooling and transposed convolutional layers, as well as the relationship between convolutional and transposed convolutional layers. Relationships are derived for various cases, and are illustrated in order to make them intuitive.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next