Showing 55 open source projects for "image"

View related business solutions
  • Cloud tools for web scraping and data extraction Icon
    Cloud tools for web scraping and data extraction

    Deploy pre-built tools that crawl websites, extract structured data, and feed your applications. Reliable web data without maintaining scrapers.

    Automate web data collection with cloud tools that handle anti-bot measures, browser rendering, and data transformation out of the box. Extract content from any website, push to vector databases for RAG workflows, or pipe directly into your apps via API. Schedule runs, set up webhooks, and connect to your existing stack. Free tier available, then scale as you need to.
    Explore 10,000+ tools
  • SIEM | API Security | Log Management Software Icon
    SIEM | API Security | Log Management Software

    AI-Powered Security and IT Operations Without Compromise.

    Built on the Graylog Platform, Graylog Security is the industry’s best-of-breed threat detection, investigation, and response (TDIR) solution. It simplifies analysts’ day-to-day cybersecurity activities with an unmatched workflow and user experience while simultaneously providing short- and long-term budget flexibility in the form of low total cost of ownership (TCO) that CISOs covet. With Graylog Security, security analysts can:
    Learn More
  • 1
    satellite-image-deep-learning

    satellite-image-deep-learning

    Resources for deep learning with satellite & aerial imagery

    ...You can also follow me on Twitter and LinkedIn where I aim to post frequent updates on my new discoveries, and I have created a dedicated group on LinkedIn. I have also started a blog here and have published a post on the history of this repository called Dissecting the satellite-image-deep-learning repo.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    Computer Vision Annotation Tool (CVAT)

    Computer Vision Annotation Tool (CVAT)

    Interactive video and image annotation tool for computer vision

    Computer Vision Annotation Tool (CVAT) is a free and open source, interactive online tool for annotating videos and images for Computer Vision algorithms. It offers many powerful features, including automatic annotation using deep learning models, interpolation of bounding boxes between key frames, LDAP and more. It is being used by its own professional data annotation team to annotate millions of objects with different properties. The UX and UI were also specially developed by the team for...
    Downloads: 30 This Week
    Last Update:
    See Project
  • 3
    Large Language Models (LLMs)

    Large Language Models (LLMs)

    Connect MATLAB to LLM APIs, including OpenAI® Chat Completions

    This repository enables MATLAB to connect with large language models (LLMs) such as OpenAI's ChatGPT, DALL-E, Azure OpenAI, and Ollama, integrating their natural language processing and image generation capabilities directly within MATLAB environments. It facilitates creating chatbots, summarizing text, and image generation, among other tasks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Albumentations

    Albumentations

    Fast image augmentation library and an easy-to-use wrapper

    Albumentations is a computer vision tool that boosts the performance of deep convolutional neural networks. Albumentations is a Python library for fast and flexible image augmentations. Albumentations efficiently implements a rich variety of image transform operations that are optimized for performance, and does so while providing a concise, yet powerful image augmentation interface for different computer vision tasks, including object classification, segmentation, and detection. Albumentations supports different computer vision tasks such as classification, semantic segmentation, instance segmentation, object detection, and pose estimation. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Free and Open Source HR Software Icon
    Free and Open Source HR Software

    OrangeHRM provides a world-class HRIS experience and offers everything you and your team need to be that HR hero you know that you are.

    Give your HR team the tools they need to streamline administrative tasks, support employees, and make informed decisions with the OrangeHRM free and open source HR software.
    Learn More
  • 5
    MONAI

    MONAI

    AI Toolkit for Healthcare Imaging

    ...It provides domain-optimized foundational capabilities for developing healthcare imaging training workflows in a native PyTorch paradigm. Project MONAI also includes MONAI Label, an intelligent open source image labeling and learning tool that helps researchers and clinicians collaborate, create annotated datasets, and build AI models in a standardized MONAI paradigm. MONAI is an open-source project. It is built on top of PyTorch and is released under the Apache 2.0 license. Aiming to capture best practices of AI development for healthcare researchers, with an immediate focus on medical imaging. ...
    Downloads: 11 This Week
    Last Update:
    See Project
  • 6
    ncnn

    ncnn

    High-performance neural network inference framework for mobile

    ncnn is a high-performance neural network inference computing framework designed specifically for mobile platforms. It brings artificial intelligence right at your fingertips with no third-party dependencies, and speeds faster than all other known open source frameworks for mobile phone cpu. ncnn allows developers to easily deploy deep learning algorithm models to the mobile platform and create intelligent APPs. It is cross-platform and supports most commonly used CNN networks, including...
    Downloads: 18 This Week
    Last Update:
    See Project
  • 7
    MATLAB Deep Learning Model Hub

    MATLAB Deep Learning Model Hub

    Discover pretrained models for deep learning in MATLAB

    Discover pre-trained models for deep learning in MATLAB. Pretrained image classification networks have already learned to extract powerful and informative features from natural images. Use them as a starting point to learn a new task using transfer learning. Inputs are RGB images, the output is the predicted label and score.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Transformers

    Transformers

    State-of-the-art Machine Learning for Pytorch, TensorFlow, and JAX

    ...Text, for tasks like text classification, information extraction, question answering, summarization, translation, text generation, in over 100 languages. Images, for tasks like image classification, object detection, and segmentation. Audio, for tasks like speech recognition and audio classification. Transformers provides APIs to quickly download and use those pretrained models on a given text, fine-tune them on your own datasets and then share them with the community on our model hub. At the same time, each python module defining an architecture is fully standalone and can be modified to enable quick research experiments.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 9
    AutoGluon

    AutoGluon

    AutoGluon: AutoML for Image, Text, and Tabular Data

    ...Easily improve/tune your bespoke models and data pipelines, or customize AutoGluon for your use-case. AutoGluon is modularized into sub-modules specialized for tabular, text, or image data. You can reduce the number of dependencies required by solely installing a specific sub-module via: python3 -m pip install <submodule>.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Run applications fast and securely in a fully managed environment Icon
    Run applications fast and securely in a fully managed environment

    Cloud Run is a fully-managed compute platform that lets you run your code in a container directly on top of scalable infrastructure.

    Run frontend and backend services, batch jobs, deploy websites and applications, and queue processing workloads without the need to manage infrastructure.
    Try for free
  • 10
    DocArray

    DocArray

    The data structure for multimodal data

    DocArray is a library for nested, unstructured, multimodal data in transit, including text, image, audio, video, 3D mesh, etc. It allows deep-learning engineers to efficiently process, embed, search, recommend, store, and transfer multimodal data with a Pythonic API. Door to multimodal world: super-expressive data structure for representing complicated/mixed/nested text, image, video, audio, 3D mesh data. The foundation data structure of Jina, CLIP-as-service, DALL·E Flow, DiscoArt etc. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    DeepDetect

    DeepDetect

    Deep Learning API and Server in C++14 support for Caffe, PyTorch

    ...While the Open Source Deep Learning Server is the core element, with REST API, and multi-platform support that allows training & inference everywhere, the Deep Learning Platform allows higher level management for training neural network models and using them as if they were simple code snippets. Ready for applications of image tagging, object detection, segmentation, OCR, Audio, Video, Text classification, CSV for tabular data and time series. Neural network templates for the most effective architectures for GPU, CPU, and Embedded devices. Training in a few hours and with small data thanks to 25+ pre-trained models. Full Open Source, with an ecosystem of tools (API clients, video, annotation, ...) ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    MegEngine

    MegEngine

    Easy-to-use deep learning framework with 3 key features

    MegEngine is a fast, scalable and easy-to-use deep learning framework with 3 key features. You can represent quantization/dynamic shape/image pre-processing and even derivation in one model. After training, just put everything into your model and inference it on any platform at ease. Speed and precision problems won't bother you anymore due to the same core inside. In training, GPU memory usage could go down to one-third at the cost of only one additional line, which enables the DTR algorithm. ...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 13
    DALI

    DALI

    A GPU-accelerated library containing highly optimized building blocks

    The NVIDIA Data Loading Library (DALI) is a library for data loading and pre-processing to accelerate deep learning applications. It provides a collection of highly optimized building blocks for loading and processing image, video and audio data. It can be used as a portable drop-in replacement for built-in data loaders and data iterators in popular deep learning frameworks. Deep learning applications require complex, multi-stage data processing pipelines that include loading, decoding, cropping, resizing, and many other augmentations. These data processing pipelines, which are currently executed on the CPU, have become a bottleneck, limiting the performance and scalability of training and inference. ...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 14
    Make-A-Video - Pytorch (wip)

    Make-A-Video - Pytorch (wip)

    Implementation of Make-A-Video, new SOTA text to video generator

    ...It has been explored before in other contexts, say for protein contact prediction as "dimensional hybrid residual networks". The gist of the paper comes down to, take a SOTA text-to-image model (here they use DALL-E2, but the same learning points would easily apply to Imagen), make a few minor modifications for attention across time and other ways to skimp on the compute cost, do frame interpolation correctly, get a great video model out. Passing in images (if one were to pretrain on images first), both temporal convolution and attention will be automatically skipped. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    JEPA

    JEPA

    PyTorch code and models for V-JEPA self-supervised learning from video

    ...This makes learning focus on semantics and structure, yielding features that transfer well with simple linear probes and minimal fine-tuning. The repository provides training recipes, data pipelines, and evaluation utilities for image JEPA variants and often includes ablations that illuminate which masking and architectural choices matter. Because the objective is non-autoregressive and operates in embedding space, JEPA tends to be compute-efficient and stable at scale. The approach has become a strong alternative to contrastive or pixel-reconstruction methods for representation learning.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 16
    AWS Deep Learning Containers

    AWS Deep Learning Containers

    A set of Docker images for training and serving models in TensorFlow

    AWS Deep Learning Containers (DLCs) are a set of Docker images for training and serving models in TensorFlow, TensorFlow 2, PyTorch, and MXNet. Deep Learning Containers provide optimized environments with TensorFlow and MXNet, Nvidia CUDA (for GPU instances), and Intel MKL (for CPU instances) libraries and are available in the Amazon Elastic Container Registry (Amazon ECR). The AWS DLCs are used in Amazon SageMaker as the default vehicles for your SageMaker jobs such as training, inference,...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 17
    Raster Vision

    Raster Vision

    Open source framework for deep learning satellite and aerial imagery

    Raster Vision is an open source framework for Python developers building computer vision models on satellite, aerial, and other large imagery sets (including oblique drone imagery). There is built-in support for chip classification, object detection, and semantic segmentation using PyTorch. Raster Vision allows engineers to quickly and repeatably configure pipelines that go through core components of a machine learning workflow: analyzing training data, creating training chips, training...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 18
    Deep Learning Models

    Deep Learning Models

    A collection of various deep learning architectures, models, and tips

    ...The code favors readability and pedagogy: components are organized so you can trace data flow through layers, losses, optimizers, and evaluation. Examples span fundamental architectures—MLPs, CNNs, RNN/Transformers—and practical tasks like image classification or text modeling. Reproducible training scripts and configuration files make it straightforward to rerun experiments or adapt them to your own datasets. The repo often pairs implementations with notes on design choices and trade-offs, turning it into both a toolbox and a learning resource. It’s suitable for students, researchers prototyping ideas, and practitioners who want clean baselines before adding complexity.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Vearch

    Vearch

    A distributed system for embedding-based vector retrieval

    ...End-to-end one-click deployment. Through the module of the plugin, a complete default visual search system can be deployed just with one click. Otherwise, you can easily customize your own image, video, or text feature extraction algorithm plugin. This GIF provides a clear demonstration of the project vearch usage and its internal structure. The use of vearch is mainly divided into three steps. Firstly, create DB and Space, then import your data, and finally, you can search on your own dataset.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    PyTorch Geometric

    PyTorch Geometric

    Geometric deep learning extension library for PyTorch

    ...These packages come with their own CPU and GPU kernel implementations based on C++/CUDA extensions. We do not recommend installation as root user on your system python. Please setup an Anaconda/Miniconda environment or create a Docker image. We provide pip wheels for all major OS/PyTorch/CUDA combinations.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    ktrain

    ktrain

    ktrain is a Python library that makes deep learning AI more accessible

    ktrain is a Python library that makes deep learning and AI more accessible and easier to apply. ktrain is a lightweight wrapper for the deep learning library TensorFlow Keras (and other libraries) to help build, train, and deploy neural networks and other machine learning models. Inspired by ML framework extensions like fastai and ludwig, ktrain is designed to make deep learning and AI more accessible and easier to apply for both newcomers and experienced practitioners. With only a few lines...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    DeepSpeed MII

    DeepSpeed MII

    MII makes low-latency and high-throughput inference possible

    ...The Deep Learning (DL) open-source community has seen tremendous growth in the last few months. Incredibly powerful text generation models such as the Bloom 176B, or image generation model such as Stable Diffusion are now available to anyone with access to a handful or even a single GPU through platforms such as Hugging Face. While open-sourcing has democratized access to AI capabilities, their application is still restricted by two critical factors: inference latency and cost. DeepSpeed-MII is a new open-source python library from DeepSpeed, aimed towards making low-latency, low-cost inference of powerful models not only feasible but also easily accessible. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Lightly

    Lightly

    A python library for self-supervised learning on images

    ...We, at Lightly, are passionate engineers who want to make deep learning more efficient. That's why - together with our community - we want to popularize the use of self-supervised methods to understand and curate raw image data. Our solution can be applied before any data annotation step and the learned representations can be used to visualize and analyze datasets. This allows selecting the best core set of samples for model training through advanced filtering. We provide PyTorch, PyTorch Lightning and PyTorch Lightning distributed examples for each of the models to kickstart your project. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Jittor

    Jittor

    Jittor is a high-performance deep learning framework

    ...A powerful op compiler and tuner are integrated into Jittor. It allowed us to generate high-performance code specialized for your model. Jittor also contains a wealth of high-performance model libraries, including image recognition, detection, segmentation, generation, differentiable rendering, geometric learning, reinforcement learning, etc. The front-end language is Python. Module Design and Dynamic Graph Execution is used in the front-end, which is the most popular design for deep learning framework interface. The back-end is implemented by high-performance languages, such as CUDA, C++. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Jina

    Jina

    Build cross-modal and multimodal applications on the cloud

    ...Jina handles the infrastructure complexity, making advanced solution engineering and cloud-native technologies accessible to every developer. Build applications that deliver fresh insights from multiple data types such as text, image, audio, video, 3D mesh, PDF with Jina AI’s DocArray. Polyglot gateway that supports gRPC, Websockets, HTTP, GraphQL protocols with TLS. Intuitive design pattern for high-performance microservices. Seamless Docker container integration: sharing, exploring, sandboxing, versioning and dependency control via Jina Hub. Fast deployment to Kubernetes, Docker Compose and Jina Cloud. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • Next