Showing 27 open source projects for "core"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Context for your AI agents Icon
    Context for your AI agents

    Crawl websites, sync to vector databases, and power RAG applications. Pre-built integrations for LLM pipelines and AI assistants.

    Build data pipelines that feed your AI models and agents without managing infrastructure. Crawl any website, transform content, and push directly to your preferred vector store. Use 10,000+ tools for RAG applications, AI assistants, and real-time knowledge bases. Monitor site changes, trigger workflows on new data, and keep your AIs fed with fresh, structured information. Cloud-native, API-first, and free to start until you need to scale.
    Try for free
  • 1
    MegEngine

    MegEngine

    Easy-to-use deep learning framework with 3 key features

    ...After training, just put everything into your model and inference it on any platform at ease. Speed and precision problems won't bother you anymore due to the same core inside. In training, GPU memory usage could go down to one-third at the cost of only one additional line, which enables the DTR algorithm. Gain the lowest memory usage when inferencing a model by leveraging our unique pushdown memory planner. NOTE: MegEngine now supports Python installation on Linux-64bit/Windows-64bit/MacOS(CPU-Only)-10.14+/Android 7+(CPU-Only) platforms with Python from 3.5 to 3.8. ...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 2
    Netron

    Netron

    Visualizer for neural network, deep learning, machine learning models

    Netron is a viewer for neural network, deep learning and machine learning models. Netron supports ONNX, Keras, TensorFlow Lite, Caffe, Darknet, Core ML, MNN, MXNet, ncnn, PaddlePaddle, Caffe2, Barracuda, Tengine, TNN, RKNN, MindSpore Lite, and UFF. Netron has experimental support for TensorFlow, PyTorch, TorchScript, OpenVINO, Torch, Arm NN, BigDL, Chainer, CNTK, Deeplearning4j, MediaPipe, ML.NET, scikit-learn, TensorFlow.js. There is an extense variety of sample model files to download or open using the browser version. ...
    Downloads: 50 This Week
    Last Update:
    See Project
  • 3
    DeepDetect

    DeepDetect

    Deep Learning API and Server in C++14 support for Caffe, PyTorch

    The core idea is to remove the error sources and difficulties of Deep Learning applications by providing a safe haven of commoditized practices, all available as a single core. While the Open Source Deep Learning Server is the core element, with REST API, and multi-platform support that allows training & inference everywhere, the Deep Learning Platform allows higher level management for training neural network models and using them as if they were simple code snippets. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Deep-Learning-Interview-Book

    Deep-Learning-Interview-Book

    Interview guide for machine learning, mathematics, and deep learning

    Deep-Learning-Interview-Book collects structured notes, Q&A, and concept summaries tailored to deep-learning interviews, turning scattered study into a coherent playbook. It spans the core math (linear algebra, probability, optimization) and the practitioner topics candidates actually face, like CNNs, RNNs/Transformers, attention, regularization, and training tricks. Explanations emphasize intuition first, then key formulas and common pitfalls, so you can reason through unseen questions rather than memorize trivia. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Total Network Visibility for Network Engineers and IT Managers Icon
    Total Network Visibility for Network Engineers and IT Managers

    Network monitoring and troubleshooting is hard. TotalView makes it easy.

    This means every device on your network, and every interface on every device is automatically analyzed for performance, errors, QoS, and configuration.
    Learn More
  • 5
    PaddlePaddle

    PaddlePaddle

    PArallel Distributed Deep LEarning: Machine Learning Framework

    ...It is the only independent R&D deep learning platform in China, and has been widely adopted in various sectors including manufacturing, agriculture and enterprise service. PaddlePaddle covers core deep learning frameworks, basic model libraries, end-to-end development kits and more, with support for both dynamic and static graphs.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 6
    OneFlow

    OneFlow

    OneFlow is a deep learning framework designed to be user-friendly

    ...An extension for OneFlow to target third-party compiler, such as XLA, TensorRT and OpenVINO etc.CUDA runtime is statically linked into OneFlow. OneFlow will work on a minimum supported driver, and any driver beyond. For more information. Distributed performance (efficiency) is the core technical difficulty of the deep learning framework. OneFlow focuses on performance improvement and heterogeneous distributed expansion. It adheres to the core concept and architecture of static compilation and streaming parallelism and solves the memory wall challenge at the cluster level. world-leading level. Provides a variety of services from primary AI talent training to enterprise-level machine learning lifecycle integrated management (MLOps), including AI training and AI development, and supports three deployment modes of public cloud, private cloud and hybrid cloud.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    MONAI

    MONAI

    AI Toolkit for Healthcare Imaging

    The MONAI framework is the open-source foundation being created by Project MONAI. MONAI is a freely available, community-supported, PyTorch-based framework for deep learning in healthcare imaging. It provides domain-optimized foundational capabilities for developing healthcare imaging training workflows in a native PyTorch paradigm. Project MONAI also includes MONAI Label, an intelligent open source image labeling and learning tool that helps researchers and clinicians collaborate, create...
    Downloads: 11 This Week
    Last Update:
    See Project
  • 8
    ncnn

    ncnn

    High-performance neural network inference framework for mobile

    ncnn is a high-performance neural network inference computing framework designed specifically for mobile platforms. It brings artificial intelligence right at your fingertips with no third-party dependencies, and speeds faster than all other known open source frameworks for mobile phone cpu. ncnn allows developers to easily deploy deep learning algorithm models to the mobile platform and create intelligent APPs. It is cross-platform and supports most commonly used CNN networks, including...
    Downloads: 16 This Week
    Last Update:
    See Project
  • 9
    Ray

    Ray

    A unified framework for scalable computing

    ...Scale reinforcement learning (RL) with RLlib, a framework-agnostic RL library that ships with 30+ cutting-edge RL algorithms including A3C, DQN, and PPO. Easily build out scalable, distributed systems in Python with simple and composable primitives in Ray Core.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Criminal IP: Cybersecurity Search Engine Icon
    Criminal IP: Cybersecurity Search Engine

    Criminal IP is a comprehensive threat intelligence search engine that detects vulnerabilities of personal and corporate cyber assets in real time

    Originated from the idea that individuals and corporations would be able to strengthen their cyber security by proactively acquiring information about IP addresses attempting to access your network, Criminal IP uses its big data of more than 4.2 billion IP addresses to provide threat-relevant information on malicious IPs and links, phishing sites, certificates, industrial control systems, IoTs, servers, security cameras, and so forth.
    Learn More
  • 10
    Pyro

    Pyro

    Deep universal probabilistic programming with Python and PyTorch

    ...Pyro is universal in that it can represent any computable probability distribution. It scales easily to large datasets with minimal overhead, and has a small yet powerful core of composable abstractions that make it both agile and maintainable. Lastly, Pyro gives you the flexibility of automation when you want it, and control when you need it.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Raster Vision

    Raster Vision

    Open source framework for deep learning satellite and aerial imagery

    ...There is built-in support for chip classification, object detection, and semantic segmentation using PyTorch. Raster Vision allows engineers to quickly and repeatably configure pipelines that go through core components of a machine learning workflow: analyzing training data, creating training chips, training models, creating predictions, evaluating models, and bundling the model files and configuration for easy deployment. The input to a Raster Vision pipeline is a set of images and training data, optionally with Areas of Interest (AOIs) that describe where the images are labeled. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 12
    MoCo (Momentum Contrast)

    MoCo (Momentum Contrast)

    Self-supervised visual learning using momentum contrast in PyTorch

    MoCo is an open source PyTorch implementation developed by Facebook AI Research (FAIR) for the papers “Momentum Contrast for Unsupervised Visual Representation Learning” (He et al., 2019) and “Improved Baselines with Momentum Contrastive Learning” (Chen et al., 2020). It introduces Momentum Contrast (MoCo), a scalable approach to self-supervised learning that enables visual representation learning without labeled data. The core idea of MoCo is to maintain a dynamic dictionary with a momentum-updated encoder, allowing efficient contrastive learning across large batches. The repository includes implementations for both MoCo v1 and MoCo v2, the latter improving training stability and performance through architectural and augmentation enhancements. Training is optimized for distributed multi-GPU environments, using DistributedDataParallel for speed and simplicity.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    GluonTS

    GluonTS

    Probabilistic time series modeling in Python

    GluonTS is a Python package for probabilistic time series modeling, focusing on deep learning based models. GluonTS requires Python 3.6 or newer, and the easiest way to install it is via pip. We train a DeepAR-model and make predictions using the simple "airpassengers" dataset. The dataset consists of a single time-series, containing monthly international passengers between the years 1949 and 1960, a total of 144 values (12 years * 12 months). We split the dataset into train and test parts,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Lightly

    Lightly

    A python library for self-supervised learning on images

    ...Our solution can be applied before any data annotation step and the learned representations can be used to visualize and analyze datasets. This allows selecting the best core set of samples for model training through advanced filtering. We provide PyTorch, PyTorch Lightning and PyTorch Lightning distributed examples for each of the models to kickstart your project. Lightly requires Python 3.6+ but we recommend using Python 3.7+. We recommend installing Lightly in a Linux or OSX environment. With lightly, you can use the latest self-supervised learning methods in a modular way using the full power of PyTorch. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    DeepCTR

    DeepCTR

    Package of deep-learning based CTR models

    DeepCTR is a Easy-to-use,Modular and Extendible package of deep-learning based CTR models along with lots of core components layers which can be used to easily build custom models. You can use any complex model with model.fit(), and model.predict(). Provide tf.keras.Model like interface for quick experiment. Provide tensorflow estimator interface for large scale data and distributed training. It is compatible with both tf 1.x and tf 2.x. With the great success of deep learning,DNN-based techniques have been widely used in CTR prediction task. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    DeepCTR-Torch

    DeepCTR-Torch

    Easy-to-use,Modular and Extendible package of deep-learning models

    DeepCTR-Torch is an easy-to-use, Modular and Extendible package of deep-learning-based CTR models along with lots of core components layers that can be used to build your own custom model easily.It is compatible with PyTorch.You can use any complex model with model.fit() and model.predict(). With the great success of deep learning, DNN-based techniques have been widely used in CTR estimation tasks. The data in the CTR estimation task usually includes high sparse,high cardinality categorical features and some dense numerical features. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    AllenNLP

    AllenNLP

    An open-source NLP research library, built on PyTorch

    AllenNLP makes it easy to design and evaluate new deep learning models for nearly any NLP problem, along with the infrastructure to easily run them in the cloud or on your laptop. AllenNLP includes reference implementations of high quality models for both core NLP problems (e.g. semantic role labeling) and NLP applications (e.g. textual entailment). AllenNLP supports loading "plugins" dynamically. A plugin is just a Python package that provides custom registered classes or additional allennlp subcommands. There is ecosystem of open source plugins, some of which are maintained by the AllenNLP team here at AI2, and some of which are maintained by the broader community. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    MXNet

    MXNet

    Lightweight, Portable, Flexible Distributed/Mobile Deep Learning

    ...Apache MXNet is a deep learning framework designed for both efficiency and flexibility. It allows you to mix symbolic and imperative programming to maximize efficiency and productivity. At its core, MXNet contains a dynamic dependency scheduler that automatically parallelizes both symbolic and imperative operations on the fly. A graph optimization layer on top of that makes symbolic execution fast and memory efficient. MXNet is portable and lightweight, scalable to many GPUs and machines. Apache MXNet is more than a deep learning project. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Deeplearning.ai

    Deeplearning.ai

    Study notes, summaries, and auxiliary materials for deep learning

    Deeplearning.ai collects study notes, summaries, and auxiliary materials aligned with the popular deep learning course series many learners take early in their AI journey. It distills core ideas such as optimization, regularization, convolutional networks, sequence models, and practical training tricks. The explanations aim to bridge theory and practice, often connecting mathematical intuition to code-level implications. By organizing the content as “books” or structured notes, it gives students a consistent reference to revisit as models and tooling evolve. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 20
    Deep Learning Papers Reading Roadmap

    Deep Learning Papers Reading Roadmap

    Deep Learning papers reading roadmap for anyone who are eager to learn

    Deep Learning Papers Reading Roadmap is a widely known curated reading plan for deep learning that helps newcomers and practitioners navigate the vast literature in a structured and intentional way. It is built around several guiding principles: moving from outline to detail, from older foundational papers to state-of-the-art work, and from generic to more specialized areas while keeping a focus on impactful contributions. The roadmap organizes papers into categories such as fundamentals,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    PaddlePaddle models

    PaddlePaddle models

    Pre-trained and Reproduced Deep Learning Models

    Pre-trained and Reproduced Deep Learning Models ("Flying Paddle" official model library, including a variety of academic frontier and industrial scene verification of deep learning models) Flying Paddle's industrial-level model library includes a large number of mainstream models that have been polished by industrial practice for a long time and models that have won championships in international competitions; it provides many scenarios for semantic understanding, image classification,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    NLP Architect

    NLP Architect

    A model library for exploring state-of-the-art deep learning

    NLP Architect is an open-source Python library for exploring state-of-the-art deep learning topologies and techniques for optimizing Natural Language Processing and Natural Language Understanding neural networks. The library includes our past and ongoing NLP research and development efforts as part of Intel AI Lab. NLP Architect is designed to be flexible for adding new models, neural network components, data handling methods, and for easy training and running models. NLP Architect is a...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    SageMaker MXNet Training Toolkit

    SageMaker MXNet Training Toolkit

    Toolkit for running MXNet training scripts on SageMaker

    ...With the SDK, you can train and deploy models using popular deep learning frameworks Apache MXNet and TensorFlow. You can also train and deploy models with Amazon algorithms, which are scalable implementations of core machine learning algorithms that are optimized for SageMaker and GPU training. If you have your own algorithms built into SageMaker compatible Docker containers, you can train and host models using these as well.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    deep-q-learning

    deep-q-learning

    Minimal Deep Q Learning (DQN & DDQN) implementations in Keras

    The deep-q-learning repository authored by keon provides a Python-based implementation of the Deep Q-Learning algorithm — a cornerstone method in reinforcement learning. It implements the core logic needed to train an agent using Q-learning with neural networks (i.e. approximating Q-values via deep nets), setting up environment interaction loops, experience replay, network updates, and policy behavior. For learners and researchers interested in reinforcement learning, this repo offers a concrete, runnable example bridging theory and practice: you can execute the code, play with hyperparameters, observe convergence behavior, and see how deep Q-learning learns policies over time in standard environments. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    LearningToCompare_FSL

    LearningToCompare_FSL

    Learning to Compare: Relation Network for Few-Shot Learning

    LearningToCompare_FSL is a PyTorch implementation of the “Learning to Compare: Relation Network for Few-Shot Learning” paper, focusing on the few-shot learning experiments described in that work. The core idea implemented here is the relation network, which learns to compare pairs of feature embeddings and output relation scores that indicate whether two images belong to the same class, enabling classification from only a handful of labeled examples. The repository provides training and evaluation code for standard few-shot benchmarks such as miniImageNet and Omniglot, making it possible to reproduce the experimental results reported in the paper. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • Next