Showing 2 open source projects for "joy 2 key"

View related business solutions
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • Desktop and Mobile Device Management Software Icon
    Desktop and Mobile Device Management Software

    It's a modern take on desktop management that can be scaled as per organizational needs.

    Desktop Central is a unified endpoint management (UEM) solution that helps in managing servers, laptops, desktops, smartphones, and tablets from a central location.
    Learn More
  • 1
    SimSiam

    SimSiam

    PyTorch implementation of SimSiam

    SimSiam is a PyTorch implementation of “Exploring Simple Siamese Representation Learning” by Xinlei Chen and Kaiming He. The project introduces a minimalist approach to self-supervised learning that avoids negative pairs, momentum encoders, or large memory banks—key complexities of prior contrastive methods. SimSiam learns image representations by maximizing similarity between two augmented views of the same image through a Siamese neural network with a stop-gradient operation, preventing feature collapse. This elegant yet effective design achieves strong results in unsupervised learning benchmarks such as ImageNet without requiring contrastive losses. ...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 2
    End-to-End Negotiator

    End-to-End Negotiator

    Deal or No Deal? End-to-End Learning for Negotiation Dialogues

    End-to-End Negotiator is a PyTorch-based research framework developed by Facebook AI Research to train neural agents capable of conducting strategic negotiations in natural language. The project implements the models presented in two key papers: “Deal or No Deal? End-to-End Learning for Negotiation Dialogues” and “Hierarchical Text Generation and Planning for Strategic Dialogue”. It enables agents to plan, reason, and communicate effectively to maximize outcomes in multi-turn negotiations over shared resources. The framework provides code for both supervised learning (training from human dialogue data) and reinforcement learning (via self-play and rollout-based planning). ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next