Showing 5 open source projects for "java rad framework"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • 1
    Deep Java Library (DJL)

    Deep Java Library (DJL)

    An engine-agnostic deep learning framework in Java

    Deep Java Library (DJL) is an open-source, high-level, engine-agnostic Java framework for deep learning. DJL is designed to be easy to get started with and simple to use for Java developers. DJL provides native Java development experience and functions like any other regular Java library. You don't have to be a machine learning/deep learning expert to get started.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 2
    tvm

    tvm

    Open deep learning compiler stack for cpu, gpu, etc.

    ...Compilation of deep learning models in Keras, MXNet, PyTorch, Tensorflow, CoreML, DarkNet and more. Start using TVM with Python today, build out production stacks using C++, Rust, or Java the next day.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 3
    MXNet

    MXNet

    Lightweight, Portable, Flexible Distributed/Mobile Deep Learning

    Apache MXNet is a scalable, efficient open-source deep learning framework—offering a flexible hybrid programming model (symbolic + imperative) and supporting a wide array of languages—designed for training and deploying neural networks across heterogeneous systems. Apache MXNet is a deep learning framework designed for both efficiency and flexibility. It allows you to mix symbolic and imperative programming to maximize efficiency and productivity. At its core, MXNet contains a dynamic...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Apache MXNet (incubating)

    Apache MXNet (incubating)

    A flexible and efficient library for deep learning

    Apache MXNet is an open source deep learning framework designed for efficient and flexible research prototyping and production. It contains a dynamic dependency scheduler that automatically parallelizes both symbolic and imperative operations. On top of this is a graph optimization layer, overall making MXNet highly efficient yet still portable, lightweight and scalable.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • 5
    NNVM

    NNVM

    Open deep learning compiler stack for cpu, gpu

    The vision of the Apache NNVM Project is to host a diverse community of experts and practitioners in machine learning, compilers, and systems architecture to build an accessible, extensible, and automated open-source framework that optimizes current and emerging machine learning models for any hardware platform. Compilation of deep learning models into minimum deployable modules. Infrastructure to automatically generates and optimize models on more backend with better performance....
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next