Showing 5 open source projects for "data driven"

View related business solutions
  • Build Secure Enterprise Apps Fast with Retool Icon
    Build Secure Enterprise Apps Fast with Retool

    Stop wasting engineering hours. Build secure, production-grade apps that connect directly to your company’s SQL and APIs.

    Create internal software that meets enterprise security standards. Retool connects to your business data—databases, APIs, and vector stores while ensuring compliance with granular permissions and audit logs. Whether on our cloud or self-hosted, build the dashboards and admin panels your organization needs without compromising on security or control.
    Learn More
  • Outgrown Windows Task Scheduler? Icon
    Outgrown Windows Task Scheduler?

    Free diagnostic identifies where your workflow is breaking down—with instant analysis of your scheduling environment.

    Windows Task Scheduler wasn't built for complex, cross-platform automation. Get a free diagnostic that shows exactly where things are failing and provides remediation recommendations. Interactive HTML report delivered in minutes.
    Download Free Tool
  • 1
    spaCy

    spaCy

    Industrial-strength Natural Language Processing (NLP)

    spaCy is a library built on the very latest research for advanced Natural Language Processing (NLP) in Python and Cython. Since its inception it was designed to be used for real world applications-- for building real products and gathering real insights. It comes with pretrained statistical models and word vectors, convolutional neural network models, easy deep learning integration and so much more. spaCy is the fastest syntactic parser in the world according to independent benchmarks, with...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 2
    AI-Agent-Host

    AI-Agent-Host

    The AI Agent Host is a module-based development environment.

    The AI Agent Host integrates several advanced technologies and offers a unique combination of features for the development of language model-driven applications. The AI Agent Host is a module-based environment designed to facilitate rapid experimentation and testing. It includes a docker-compose configuration with QuestDB, Grafana, Code-Server and Nginx. The AI Agent Host provides a seamless interface for managing and querying data, visualizing results, and coding in real-time. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 3
    AllenNLP

    AllenNLP

    An open-source NLP research library, built on PyTorch

    AllenNLP makes it easy to design and evaluate new deep learning models for nearly any NLP problem, along with the infrastructure to easily run them in the cloud or on your laptop. AllenNLP includes reference implementations of high quality models for both core NLP problems (e.g. semantic role labeling) and NLP applications (e.g. textual entailment). AllenNLP supports loading "plugins" dynamically. A plugin is just a Python package that provides custom registered classes or additional...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Pytorch Points 3D

    Pytorch Points 3D

    Pytorch framework for doing deep learning on point clouds

    ...Task driven implementation with dynamic model and dataset resolution from arguments. Core implementation of common components for point cloud deep learning - greatly simplifying the creation of new models. 4 Base Convolution base classes to simplify the implementation of new convolutions. Each base class supports a different data format.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 5
    ML for Trading

    ML for Trading

    Code for machine learning for algorithmic trading, 2nd edition

    On over 800 pages, this revised and expanded 2nd edition demonstrates how ML can add value to algorithmic trading through a broad range of applications. Organized in four parts and 24 chapters, it covers the end-to-end workflow from data sourcing and model development to strategy backtesting and evaluation. Covers key aspects of data sourcing, financial feature engineering, and portfolio management. The design and evaluation of long-short strategies based on a broad range of ML algorithms,...
    Downloads: 1 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next