Deep Learning Frameworks for Linux

View 20 business solutions

Browse free open source Deep Learning Frameworks and projects for Linux below. Use the toggles on the left to filter open source Deep Learning Frameworks by OS, license, language, programming language, and project status.

  • Outgrown Windows Task Scheduler? Icon
    Outgrown Windows Task Scheduler?

    Free diagnostic identifies where your workflow is breaking down—with instant analysis of your scheduling environment.

    Windows Task Scheduler wasn't built for complex, cross-platform automation. Get a free diagnostic that shows exactly where things are failing and provides remediation recommendations. Interactive HTML report delivered in minutes.
    Download Free Tool
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 1
    OpenCV

    OpenCV

    Open Source Computer Vision Library

    The Open Source Computer Vision Library has >2500 algorithms, extensive documentation and sample code for real-time computer vision. It works on Windows, Linux, Mac OS X, Android, iOS in your browser through JavaScript. Languages: C++, Python, Julia, Javascript Homepage: https://opencv.org Q&A forum: https://forum.opencv.org/ Documentation: https://docs.opencv.org Source code: https://github.com/opencv Please pay special attention to our tutorials! https://docs.opencv.org/master Books about the OpenCV are described here: https://opencv.org/books.html
    Leader badge
    Downloads: 2,782 This Week
    Last Update:
    See Project
  • 2
    PyTorch

    PyTorch

    Open source machine learning framework

    PyTorch is a Python package that offers Tensor computation (like NumPy) with strong GPU acceleration and deep neural networks built on tape-based autograd system. This project allows for fast, flexible experimentation and efficient production. PyTorch consists of torch (Tensor library), torch.autograd (tape-based automatic differentiation library), torch.jit (a compilation stack [TorchScript]), torch.nn (neural networks library), torch.multiprocessing (Python multiprocessing), and torch.utils (DataLoader and other utility functions). PyTorch can be used as a replacement for Numpy, or as a deep learning research platform that provides optimum flexibility and speed.
    Downloads: 97 This Week
    Last Update:
    See Project
  • 3
    Netron

    Netron

    Visualizer for neural network, deep learning, machine learning models

    Netron is a viewer for neural network, deep learning and machine learning models. Netron supports ONNX, Keras, TensorFlow Lite, Caffe, Darknet, Core ML, MNN, MXNet, ncnn, PaddlePaddle, Caffe2, Barracuda, Tengine, TNN, RKNN, MindSpore Lite, and UFF. Netron has experimental support for TensorFlow, PyTorch, TorchScript, OpenVINO, Torch, Arm NN, BigDL, Chainer, CNTK, Deeplearning4j, MediaPipe, ML.NET, scikit-learn, TensorFlow.js. There is an extense variety of sample model files to download or open using the browser version. It is supported by macOS, Windows, Linux, Python Server and browser.
    Downloads: 54 This Week
    Last Update:
    See Project
  • 4
    YOLOv3

    YOLOv3

    Object detection architectures and models pretrained on the COCO data

    Fast, precise and easy to train, YOLOv5 has a long and successful history of real time object detection. Treat YOLOv5 as a university where you'll feed your model information for it to learn from and grow into one integrated tool. You can get started with less than 6 lines of code. with YOLOv5 and its Pytorch implementation. Have a go using our API by uploading your own image and watch as YOLOv5 identifies objects using our pretrained models. Start training your model without being an expert. Students love YOLOv5 for its simplicity and there are many quickstart examples for you to get started within seconds. Export and deploy your YOLOv5 model with just 1 line of code. There are also loads of quickstart guides and tutorials available to get your model where it needs to be. Create state of the art deep learning models with YOLOv5
    Downloads: 54 This Week
    Last Update:
    See Project
  • Retool your internal operations Icon
    Retool your internal operations

    Generate secure, production-grade apps that connect to your business data. Not just prototypes, but tools your team can actually deploy.

    Build internal software that meets enterprise security standards without waiting on engineering resources. Retool connects to your databases, APIs, and data sources while maintaining the permissions and controls you need. Create custom dashboards, admin tools, and workflows from natural language prompts—all deployed in your cloud with security baked in. Stop duct-taping operations together, start building in Retool.
    Build an app in Retool
  • 5
    ONNX Runtime

    ONNX Runtime

    ONNX Runtime: cross-platform, high performance ML inferencing

    ONNX Runtime is a cross-platform inference and training machine-learning accelerator. ONNX Runtime inference can enable faster customer experiences and lower costs, supporting models from deep learning frameworks such as PyTorch and TensorFlow/Keras as well as classical machine learning libraries such as scikit-learn, LightGBM, XGBoost, etc. ONNX Runtime is compatible with different hardware, drivers, and operating systems, and provides optimal performance by leveraging hardware accelerators where applicable alongside graph optimizations and transforms. ONNX Runtime training can accelerate the model training time on multi-node NVIDIA GPUs for transformer models with a one-line addition for existing PyTorch training scripts. Support for a variety of frameworks, operating systems and hardware platforms. Built-in optimizations that deliver up to 17X faster inferencing and up to 1.4X faster training.
    Downloads: 49 This Week
    Last Update:
    See Project
  • 6
    OpenVINO

    OpenVINO

    OpenVINO™ Toolkit repository

    OpenVINO™ is an open-source toolkit for optimizing and deploying AI inference. Boost deep learning performance in computer vision, automatic speech recognition, natural language processing and other common tasks. Use models trained with popular frameworks like TensorFlow, PyTorch and more. Reduce resource demands and efficiently deploy on a range of Intel® platforms from edge to cloud. This open-source version includes several components: namely Model Optimizer, OpenVINO™ Runtime, Post-Training Optimization Tool, as well as CPU, GPU, MYRIAD, multi device and heterogeneous plugins to accelerate deep learning inferencing on Intel® CPUs and Intel® Processor Graphics. It supports pre-trained models from the Open Model Zoo, along with 100+ open source and public models in popular formats such as TensorFlow, ONNX, PaddlePaddle, MXNet, Caffe, Kaldi.
    Downloads: 34 This Week
    Last Update:
    See Project
  • 7
    ncnn

    ncnn

    High-performance neural network inference framework for mobile

    ncnn is a high-performance neural network inference computing framework designed specifically for mobile platforms. It brings artificial intelligence right at your fingertips with no third-party dependencies, and speeds faster than all other known open source frameworks for mobile phone cpu. ncnn allows developers to easily deploy deep learning algorithm models to the mobile platform and create intelligent APPs. It is cross-platform and supports most commonly used CNN networks, including Classical CNN (VGG AlexNet GoogleNet Inception), Face Detection (MTCNN RetinaFace), Segmentation (FCN PSPNet UNet YOLACT), and more. ncnn is currently being used in a number of Tencent applications, namely: QQ, Qzone, WeChat, and Pitu.
    Downloads: 34 This Week
    Last Update:
    See Project
  • 8
    AirSim

    AirSim

    A simulator for drones, cars and more, built on Unreal Engine

    AirSim is an open-source, cross platform simulator for drones, cars and more vehicles, built on Unreal Engine with an experimental Unity release in the works. It supports software-in-the-loop simulation with popular flight controllers such as PX4 & ArduPilot and hardware-in-loop with PX4 for physically and visually realistic simulations. It is developed as an Unreal plugin that can simply be dropped into any Unreal environment. AirSim's development is oriented towards the goal of creating a platform for AI research to experiment with deep learning, computer vision and reinforcement learning algorithms for autonomous vehicles. For this purpose, AirSim also exposes APIs to retrieve data and control vehicles in a platform independent way. AirSim is fully enabled for multiple vehicles. This capability allows you to create multiple vehicles easily and use APIs to control them.
    Downloads: 33 This Week
    Last Update:
    See Project
  • 9
    Computer Vision Annotation Tool (CVAT)

    Computer Vision Annotation Tool (CVAT)

    Interactive video and image annotation tool for computer vision

    Computer Vision Annotation Tool (CVAT) is a free and open source, interactive online tool for annotating videos and images for Computer Vision algorithms. It offers many powerful features, including automatic annotation using deep learning models, interpolation of bounding boxes between key frames, LDAP and more. It is being used by its own professional data annotation team to annotate millions of objects with different properties. The UX and UI were also specially developed by the team for computer vision tasks. CVAT supports several annotation formats. Format selection can be done after clicking on the Upload annotation and Dump annotation buttons.
    Downloads: 27 This Week
    Last Update:
    See Project
  • MyQ Print Management Software Icon
    MyQ Print Management Software

    SAVE TIME WITH PERSONALIZED PRINT SOLUTIONS

    Boost your digital or traditional workplace with MyQ’s secure print and scan solutions that respect your time and help you focus on what you do best.
    Learn More
  • 10
    GIMP ML

    GIMP ML

    AI for GNU Image Manipulation Program

    This repository introduces GIMP3-ML, a set of Python plugins for the widely popular GNU Image Manipulation Program (GIMP). It enables the use of recent advances in computer vision to the conventional image editing pipeline. Applications from deep learning such as monocular depth estimation, semantic segmentation, mask generative adversarial networks, image super-resolution, de-noising and coloring have been incorporated with GIMP through Python-based plugins. Additionally, operations on images such as edge detection and color clustering have also been added. GIMP-ML relies on standard Python packages such as numpy, scikit-image, pillow, pytorch, open-cv, scipy. In addition, GIMP-ML also aims to bring the benefits of using deep learning networks used for computer vision tasks to routine image processing workflows.
    Downloads: 20 This Week
    Last Update:
    See Project
  • 11
    TensorRT

    TensorRT

    C++ library for high performance inference on NVIDIA GPUs

    NVIDIA® TensorRT™ is an SDK for high-performance deep learning inference. It includes a deep learning inference optimizer and runtime that delivers low latency and high throughput for deep learning inference applications. TensorRT-based applications perform up to 40X faster than CPU-only platforms during inference. With TensorRT, you can optimize neural network models trained in all major frameworks, calibrate for lower precision with high accuracy, and deploy to hyperscale data centers, embedded, or automotive product platforms. TensorRT is built on CUDA®, NVIDIA’s parallel programming model, and enables you to optimize inference leveraging libraries, development tools, and technologies in CUDA-X™ for artificial intelligence, autonomous machines, high-performance computing, and graphics. With new NVIDIA Ampere Architecture GPUs, TensorRT also leverages sparse tensor cores providing an additional performance boost.
    Downloads: 20 This Week
    Last Update:
    See Project
  • 12
    Recommenders

    Recommenders

    Best practices on recommendation systems

    The Recommenders repository provides examples and best practices for building recommendation systems, provided as Jupyter notebooks. The module reco_utils contains functions to simplify common tasks used when developing and evaluating recommender systems. Several utilities are provided in reco_utils to support common tasks such as loading datasets in the format expected by different algorithms, evaluating model outputs, and splitting training/test data. Implementations of several state-of-the-art algorithms are included for self-study and customization in your own applications. Please see the setup guide for more details on setting up your machine locally, on a data science virtual machine (DSVM) or on Azure Databricks. Independent or incubating algorithms and utilities are candidates for the contrib folder. This will house contributions which may not easily fit into the core repository or need time to refactor or mature the code and add necessary tests.
    Downloads: 18 This Week
    Last Update:
    See Project
  • 13
    GROBID

    GROBID

    A machine learning software for extracting information

    GROBID is a machine learning library for extracting, parsing, and re-structuring raw documents such as PDF into structured XML/TEI encoded documents with a particular focus on technical and scientific publications. First developments started in 2008 as a hobby. In 2011 the tool has been made available in open source. Work on GROBID has been steady as a side project since the beginning and is expected to continue as such. Header extraction and parsing from article in PDF format. The extraction here covers the usual bibliographical information (e.g. title, abstract, authors, affiliations, keywords, etc.). References extraction and parsing from articles in PDF format, around .87 F1-score against on an independent PubMed Central set of 1943 PDF containing 90,125 references, and around .89 on a similar bioRxiv set of 2000 PDF (using the Deep Learning citation model). All the usual publication metadata are covered (including DOI, PMID, etc.).
    Downloads: 16 This Week
    Last Update:
    See Project
  • 14
    MIT Deep Learning Book

    MIT Deep Learning Book

    MIT Deep Learning Book in PDF format by Ian Goodfellow

    The Deep Learning textbook is a resource intended to help students and practitioners enter the field of machine learning in general and deep learning in particular. The online version of the book is now complete and will remain available online for free. MIT Deep Learning Book in PDF format (complete and parts) by Ian Goodfellow, Yoshua Bengio and Aaron Courville. An MIT Press book Ian Goodfellow and Yoshua Bengio and Aaron Courville. Written by three experts in the field, Deep Learning is the only comprehensive book on the subject. This is not available as PDF download. So, I have taken the prints of the HTML content and bound them into a flawless PDF version of the book, as suggested by the website itself. Printing seems to work best printing directly from the browser, using Chrome. Other browsers do not work as well.
    Downloads: 16 This Week
    Last Update:
    See Project
  • 15
    MNN

    MNN

    MNN is a blazing fast, lightweight deep learning framework

    MNN is a highly efficient and lightweight deep learning framework. It supports inference and training of deep learning models, and has industry leading performance for inference and training on-device. At present, MNN has been integrated in more than 20 apps of Alibaba Inc, such as Taobao, Tmall, Youku, Dingtalk, Xianyu and etc., covering more than 70 usage scenarios such as live broadcast, short video capture, search recommendation, product searching by image, interactive marketing, equity distribution, security risk control. In addition, MNN is also used on embedded devices, such as IoT. MNN Workbench could be downloaded from MNN's homepage, which provides pretrained models, visualized training tools, and one-click deployment of models to devices. Android platform, core so size is about 400KB, OpenCL so is about 400KB, Vulkan so is about 400KB. Supports hybrid computing on multiple devices. Currently supports CPU and GPU.
    Downloads: 14 This Week
    Last Update:
    See Project
  • 16
    Lightning-Hydra-Template

    Lightning-Hydra-Template

    PyTorch Lightning + Hydra. A very user-friendly template

    Convenient all-in-one technology stack for deep learning prototyping - allows you to rapidly iterate over new models, datasets and tasks on different hardware accelerators like CPUs, multi-GPUs or TPUs. A collection of best practices for efficient workflow and reproducibility. Thoroughly commented - you can use this repo as a reference and educational resource. Not fitted for data engineering - the template configuration setup is not designed for building data processing pipelines that depend on each other. PyTorch Lightning, a lightweight PyTorch wrapper for high-performance AI research. Think of it as a framework for organizing your PyTorch code. Hydra, a framework for elegantly configuring complex applications. The key feature is the ability to dynamically create a hierarchical configuration by composition and override it through config files and the command line.
    Downloads: 10 This Week
    Last Update:
    See Project
  • 17
    Keras

    Keras

    Python-based neural networks API

    Python Deep Learning library
    Downloads: 8 This Week
    Last Update:
    See Project
  • 18
    Torch-TensorRT

    Torch-TensorRT

    PyTorch/TorchScript/FX compiler for NVIDIA GPUs using TensorRT

    Torch-TensorRT is a compiler for PyTorch/TorchScript, targeting NVIDIA GPUs via NVIDIA’s TensorRT Deep Learning Optimizer and Runtime. Unlike PyTorch’s Just-In-Time (JIT) compiler, Torch-TensorRT is an Ahead-of-Time (AOT) compiler, meaning that before you deploy your TorchScript code, you go through an explicit compile step to convert a standard TorchScript program into a module targeting a TensorRT engine. Torch-TensorRT operates as a PyTorch extension and compiles modules that integrate into the JIT runtime seamlessly. After compilation using the optimized graph should feel no different than running a TorchScript module. You also have access to TensorRT’s suite of configurations at compile time, so you are able to specify operating precision (FP32/FP16/INT8) and other settings for your module.
    Downloads: 8 This Week
    Last Update:
    See Project
  • 19
    MONAI

    MONAI

    AI Toolkit for Healthcare Imaging

    The MONAI framework is the open-source foundation being created by Project MONAI. MONAI is a freely available, community-supported, PyTorch-based framework for deep learning in healthcare imaging. It provides domain-optimized foundational capabilities for developing healthcare imaging training workflows in a native PyTorch paradigm. Project MONAI also includes MONAI Label, an intelligent open source image labeling and learning tool that helps researchers and clinicians collaborate, create annotated datasets, and build AI models in a standardized MONAI paradigm. MONAI is an open-source project. It is built on top of PyTorch and is released under the Apache 2.0 license. Aiming to capture best practices of AI development for healthcare researchers, with an immediate focus on medical imaging. Providing user-comprehensible error messages and easy to program API interfaces. Provides reproducibility of research experiments for comparisons against state-of-the-art implementations.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 20
    SHAP

    SHAP

    A game theoretic approach to explain the output of ml models

    SHAP (SHapley Additive exPlanations) is a game theoretic approach to explain the output of any machine learning model. It connects optimal credit allocation with local explanations using the classic Shapley values from game theory and their related extensions. While SHAP can explain the output of any machine learning model, we have developed a high-speed exact algorithm for tree ensemble methods. Fast C++ implementations are supported for XGBoost, LightGBM, CatBoost, scikit-learn and pyspark tree models. To understand how a single feature effects the output of the model we can plot the SHAP value of that feature vs. the value of the feature for all the examples in a dataset. Since SHAP values represent a feature's responsibility for a change in the model output, the plot below represents the change in predicted house price as RM (the average number of rooms per house in an area) changes.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 21
    SageMaker Hugging Face Inference Toolkit

    SageMaker Hugging Face Inference Toolkit

    Library for serving Transformers models on Amazon SageMaker

    SageMaker Hugging Face Inference Toolkit is an open-source library for serving Transformers models on Amazon SageMaker. This library provides default pre-processing, predict and postprocessing for certain Transformers models and tasks. It utilizes the SageMaker Inference Toolkit for starting up the model server, which is responsible for handling inference requests. For the Dockerfiles used for building SageMaker Hugging Face Containers, see AWS Deep Learning Containers. The SageMaker Hugging Face Inference Toolkit implements various additional environment variables to simplify your deployment experience. The Hugging Face Inference Toolkit allows user to override the default methods of the HuggingFaceHandlerService. SageMaker Hugging Face Inference Toolkit is licensed under the Apache 2.0 License.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 22
    Unity ML-Agents Toolkit

    Unity ML-Agents Toolkit

    Unity machine learning agents toolkit

    Train and embed intelligent agents by leveraging state-of-the-art deep learning technology. Creating responsive and intelligent virtual players and non-playable game characters is hard. Especially when the game is complex. To create intelligent behaviors, developers have had to resort to writing tons of code or using highly specialized tools. With Unity Machine Learning Agents (ML-Agents), you are no longer “coding” emergent behaviors, but rather teaching intelligent agents to “learn” through a combination of deep reinforcement learning and imitation learning. Using ML-Agents allows developers to create more compelling gameplay and an enhanced game experience. Advancement of artificial intelligence (AI) research depends on figuring out tough problems in existing environments using current benchmarks for training AI models. Using Unity and the ML-Agents toolkit, you can create AI environments that are physically, visually, and cognitively rich.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 23

    Face Recognition

    World's simplest facial recognition api for Python & the command line

    Face Recognition is the world's simplest face recognition library. It allows you to recognize and manipulate faces from Python or from the command line using dlib's (a C++ toolkit containing machine learning algorithms and tools) state-of-the-art face recognition built with deep learning. Face Recognition is highly accurate and is able to do a number of things. It can find faces in pictures, manipulate facial features in pictures, identify faces in pictures, and do face recognition on a folder of images from the command line. It could even do real-time face recognition and blur faces on videos when used with other Python libraries.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 24
    TTS

    TTS

    Deep learning for text to speech

    TTS is a library for advanced Text-to-Speech generation. It's built on the latest research, was designed to achieve the best trade-off among ease-of-training, speed, and quality. TTS comes with pre-trained models, tools for measuring dataset quality, and is already used in 20+ languages for products and research projects. Released models in PyTorch, Tensorflow and TFLite. Tools to curate Text2Speech datasets underdataset_analysis. Demo server for model testing. Notebooks for extensive model benchmarking. Modular (but not too much) code base enabling easy testing for new ideas. Text2Spec models (Tacotron, Tacotron2, Glow-TTS, SpeedySpeech). Speaker Encoder to compute speaker embeddings efficiently. Vocoder models (MelGAN, Multiband-MelGAN, GAN-TTS, ParallelWaveGAN, WaveGrad, WaveRNN). If you are only interested in synthesizing speech with the released TTS models, installing from PyPI is the easiest option.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 25
    Coqui STT

    Coqui STT

    The deep learning toolkit for speech-to-text

    Coqui STT is a fast, open-source, multi-platform, deep-learning toolkit for training and deploying speech-to-text models. Coqui STT is battle-tested in both production and research. Multiple possible transcripts, each with an associated confidence score. Experience the immediacy of script-to-performance. With Coqui text-to-speech, production times go from months to minutes. With Coqui, the post is a pleasure. Effortlessly clone the voices of your talent and have the clone handle the problems in post. With Coqui, dubbing is a delight. Effortlessly clone the voice of your talent into another language and let the clone do the dub. With text-to-speech, experience the immediacy of script-to-performance. Cast from a wide selection of high-quality, directable, emotive voices or clone a voice to suit your needs. With Coqui text-to-speech, production times go from months to minutes.
    Downloads: 5 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • 4
  • 5
  • Next